Okay, so I added serialization to the types (why did you leave it out?)
struct X
{
int p;
double q;
private:
friend boost::serialization::access;
template <typename Ar>
void serialize(Ar& ar, unsigned) {
ar & BOOST_SERIALIZATION_NVP(p);
ar & BOOST_SERIALIZATION_NVP(q);
}
};
struct Y
{
float m;
double n;
private:
friend boost::serialization::access;
template <typename Ar>
void serialize(Ar& ar, unsigned) {
ar & BOOST_SERIALIZATION_NVP(m);
ar & BOOST_SERIALIZATION_NVP(n);
}
};
struct Z
{
std::map<std::string, boost::shared_ptr<X>> Xtype;
std::map<std::string, boost::shared_ptr<Y>> Ytype;
int i;
std::string name;
private:
friend boost::serialization::access;
template <typename Ar>
void serialize(Ar& ar, unsigned) {
ar & BOOST_SERIALIZATION_NVP(i);
ar & BOOST_SERIALIZATION_NVP(name);
ar & BOOST_SERIALIZATION_NVP(Xtype);
ar & BOOST_SERIALIZATION_NVP(Ytype);
}
};
And now, using the Nonius benchmarking mini-framework, write the following benchmarks:
Z const& fixture(); // forward
#include <nonius/main.h++>
#include <sstream>
NONIUS_BENCHMARK("text archive", [](nonius::chronometer meter) {
auto const& z = fixture();
meter.measure([&](int /*i*/) {
std::stringstream ss;
boost::archive::text_oarchive oa(ss);
oa << z;
Z clone;
boost::archive::text_iarchive ia(ss);
ia >> clone;
return ss.str().size(); // something observable to thwart the overly smart optimizer
});
})
NONIUS_BENCHMARK("binary archive", [](nonius::chronometer meter) {
auto const& z = fixture();
meter.measure([&](int /*i*/) {
std::stringstream ss;
boost::archive::binary_oarchive oa(ss);
oa << z;
Z clone;
boost::archive::binary_iarchive ia(ss);
ia >> clone;
return ss.str().size(); // something observable to thwart the overly smart optimizer
});
})
NONIUS_BENCHMARK("xml archive", [](nonius::chronometer meter) {
auto const& z = fixture();
meter.measure([&](int /*i*/) {
std::stringstream ss;
boost::archive::xml_oarchive oa(ss);
oa << boost::serialization::make_nvp("root", z);
Z clone;
boost::archive::xml_iarchive ia(ss);
ia >> boost::serialization::make_nvp("root", clone);
return ss.str().size(); // something observable to thwart the overly smart optimizer
});
})
The raw output is (for a fixture of 1000 random X and 3000 random Y values):
text archive
mean: 236.069 μs
std dev: 2.54923 μs
variance is unaffected by outliers
binary archive
mean: 92.9736 μs
std dev: 3.35504 μs
variance is moderately inflated by outliers
xml archive
mean: 786.746 μs
std dev: 4.676 μs
variance is unaffected by outliers
Interactive plot: click here
The test fixture is actually a lot more work, and is defined as follows:
#include <boost/random.hpp> // for test data
#include <boost/bind.hpp>
#include <boost/make_shared.hpp>
#include <algorithm>
Z const& fixture()
{
static Z const z = [] {
Z z;
boost::random::mt19937 engine;
auto fgen = boost::bind(boost::random::uniform_real_distribution<float>(), engine);
auto dgen = boost::bind(boost::random::uniform_real_distribution<double>(), engine);
auto cgen = boost::bind(boost::random::uniform_int_distribution<char>('a', 'z'), engine);
auto igen = boost::bind(boost::random::uniform_int_distribution<int>(), engine);
auto sgen = [&] (int maxlen) { std::string s; std::generate_n(back_inserter(s), igen() % maxlen, cgen); return s; };
std::generate_n(inserter(z.Ytype, z.Ytype.end()), 1000, [&] {
auto py = boost::make_shared<Y>();
py->m = fgen();
py->n = dgen();
return std::make_pair(sgen(32), py);
});
std::generate_n(inserter(z.Xtype, z.Xtype.end()), 3000, [&] {
auto px = boost::make_shared<X>();
px->p = igen();
px->q = dgen();
return std::make_pair(sgen(32), px);
});
z.i = igen();
z.name = sgen(8);
return z;
}();
return z;
}
Full Code Listing
On Coliru