I created an ols
module designed to mimic pandas' deprecated MovingOLS
; it is here.
It has three core classes:
OLS
: static (single-window) ordinary least-squares regression. The output are NumPy arrays
RollingOLS
: rolling (multi-window) ordinary least-squares regression. The output are higher-dimension NumPy arrays.
PandasRollingOLS
: wraps the results of RollingOLS
in pandas Series & DataFrames. Designed to mimic the look of the deprecated pandas module.
Note that the module is part of a package (which I'm currently in the process of uploading to PyPi) and it requires one inter-package import.
The first two classes above are implemented entirely in NumPy and primarily use matrix algebra. RollingOLS
takes advantage of broadcasting extensively also. Attributes largely mimic statsmodels' OLS RegressionResultsWrapper
.
An example:
import urllib.parse
import pandas as pd
from pyfinance.ols import PandasRollingOLS
# You can also do this with pandas-datareader; here's the hard way
url = "https://fred.stlouisfed.org/graph/fredgraph.csv"
syms = {
"TWEXBMTH" : "usd",
"T10Y2YM" : "term_spread",
"GOLDAMGBD228NLBM" : "gold",
}
params = {
"fq": "Monthly,Monthly,Monthly",
"id": ",".join(syms.keys()),
"cosd": "2000-01-01",
"coed": "2019-02-01",
}
data = pd.read_csv(
url + "?" + urllib.parse.urlencode(params, safe=","),
na_values={"."},
parse_dates=["DATE"],
index_col=0
).pct_change().dropna().rename(columns=syms)
print(data.head())
# usd term_spread gold
# DATE
# 2000-02-01 0.012580 -1.409091 0.057152
# 2000-03-01 -0.000113 2.000000 -0.047034
# 2000-04-01 0.005634 0.518519 -0.023520
# 2000-05-01 0.022017 -0.097561 -0.016675
# 2000-06-01 -0.010116 0.027027 0.036599
y = data.usd
x = data.drop('usd', axis=1)
window = 12 # months
model = PandasRollingOLS(y=y, x=x, window=window)
print(model.beta.head()) # Coefficients excluding the intercept
# term_spread gold
# DATE
# 2001-01-01 0.000033 -0.054261
# 2001-02-01 0.000277 -0.188556
# 2001-03-01 0.002432 -0.294865
# 2001-04-01 0.002796 -0.334880
# 2001-05-01 0.002448 -0.241902
print(model.fstat.head())
# DATE
# 2001-01-01 0.136991
# 2001-02-01 1.233794
# 2001-03-01 3.053000
# 2001-04-01 3.997486
# 2001-05-01 3.855118
# Name: fstat, dtype: float64
print(model.rsq.head()) # R-squared
# DATE
# 2001-01-01 0.029543
# 2001-02-01 0.215179
# 2001-03-01 0.404210
# 2001-04-01 0.470432
# 2001-05-01 0.461408
# Name: rsq, dtype: float64