How do I pretty-print a JSON file in Python?
Use the indent=
parameter of json.dump()
or json.dumps()
to specify how many spaces to indent by:
>>> import json
>>> your_json = '["foo", {"bar": ["baz", null, 1.0, 2]}]'
>>> parsed = json.loads(your_json)
>>> print(json.dumps(parsed, indent=4))
[
"foo",
{
"bar": [
"baz",
null,
1.0,
2
]
}
]
To parse a file, use json.load()
:
with open('filename.txt', 'r') as handle:
parsed = json.load(handle)
var str = JSON.stringify(obj, null, 4);
as discussed here #4811341 –
Chiang {"a": 1, "b": 2, "c"3}
maybe because it is so short it would still be better spread out over multiple lines? –
Goatsucker You can do this on the command line:
python3 -m json.tool some.json
(as already mentioned in the commentaries to the question, thanks to @Kai Petzke for the python3 suggestion).
Actually python is not my favourite tool as far as json processing on the command line is concerned. For simple pretty printing is ok, but if you want to manipulate the json it can become overcomplicated. You'd soon need to write a separate script-file, you could end up with maps whose keys are u"some-key" (python unicode), which makes selecting fields more difficult and doesn't really go in the direction of pretty-printing.
You can also use jq:
jq . some.json
and you get colors as a bonus (and way easier extendability).
Addendum: There is some confusion in the comments about using jq to process large JSON files on the one hand, and having a very large jq program on the other. For pretty-printing a file consisting of a single large JSON entity, the practical limitation is RAM. For pretty-printing a 2GB file consisting of a single array of real-world data, the "maximum resident set size" required for pretty-printing was 5GB (whether using jq 1.5 or 1.6). Note also that jq can be used from within python after pip install jq
.
jq '' < some.json
–
Wickham u"some-key"
with the u
–
Polypropylene curl -s
option you can hide sometime useless speed statistic. –
Prudery python3 -m json.tool <IN >OUT
, as this keeps the original order of the fields in JSON dicts. The python interpreter version 2 sorts the fields in alphabetically ascending order, which often is not, what you want. –
Darindaring python -m json.tool
does work, though, and is better than nothing. I know it's 2019 already, but there are still plenty of systems around that don't have python3
installed! –
Shellans python3 -m json.tool in_file [out_file]
works directly (I updated the answer). –
Accelerate After reading the data with the json
standard library module, use the pprint standard library module to display the parsed data. Example:
import json
import pprint
json_data = None
with open('file_name.txt', 'r') as f:
data = f.read()
json_data = json.loads(data)
# print json to screen with human-friendly formatting
pprint.pprint(json_data, compact=True)
# write json to file with human-friendly formatting
pretty_json_str = pprint.pformat(json_data, compact=True).replace("'",'"')
with open('file_name.json', 'w') as f:
f.write(pretty_json_str)
The default indent
is 1, so you may want to specify your own.
By default, pprint will output lists like this:
'not compact': ['pprint',
'will',
'output',
'lists',
'like',
'this'],
And that is no better than json.dump()
or json.dumps()
with an indent
specified.
With compact=True
, pprint will output lists something like this:
'compact': ['pprint', 'with compact=True', 'will', 'output',
'lists', 'like', 'this'],
Note that you can specify where it will wrap with the width
argument.
It is necessary to replace 'single quotes' with 'double quotes' in the string returned by pprint.pformat(), because single quotes are not valid json. When you look at the file in your text editor, it may be unable to highlight the json properly.
In any case, you may want to save it as valid json, so that you can as a human can simply read your json files comfortably, if it is not more important that they are formatted without spacing so they can be computer-processed with blinding speed.
Ultimately, the output will look like this:
{'address': {'city': 'New York',
'postalCode': '10021-3100',
'state': 'NY',
'streetAddress': '21 2nd Street'},
'age': 27,
'children': [],
'firstName': 'John',
'isAlive': True,
'lastName': 'Smith'}
pprint
will output many string representations that only make sense to Python. None
, datetime
, all sorts of objects, even when they have well defined ways to be JSON serializable. Replacing the single to double quotes only makes it worse, it will potentially not even be valid Python anymore, all you need is a double quote in any string. –
Joelie pprint.pformat
output (just like repr
output) into valid JSON, even if the data originally came from JSON. Trivial example: round-tripping the valid file contents "\""
(representing, in JSON, a string containing a backslash) will produce """
(which is neither valid JSON nor a valid Python literal). Round-tripping the valid file contents null
will produce a file containing None
. –
Ninebark Pygmentize is a powerful tool for coloring the output of terminal commands.
Here is an example of using it to add syntax highlighting to the json.tool
output:
echo '{"foo": "bar"}' | python -m json.tool | pygmentize -l json
The result will look like:
In a previous Stack Overflow answer, I show in detail how to install and use pygmentize
.
-g
is not actually working ;) Since input comes from stdin, pygmentize is not able to make a good guess. You need to specify lexer explicitly: echo '{"foo": "bar"}' | python -m json.tool | pygmentize -l json
–
Ancelin Use this function and don't sweat having to remember if your JSON is a str
or dict
again - just look at the pretty print:
import json
def pp_json(json_thing, sort=True, indents=4):
if type(json_thing) is str:
print(json.dumps(json.loads(json_thing), sort_keys=sort, indent=indents))
else:
print(json.dumps(json_thing, sort_keys=sort, indent=indents))
return None
pp_json(your_json_string_or_dict)
indent
keyword parameter, which is already well covered. Aside from that, it's valid for a JSON document to represent a single string. Determining which processing to use with the input should be the programmer's responsiblity, from applying logical reasoning - while Python is designed to allow this kind of flexibility, doing explicit type checking and coercion is generally discouraged. –
Ninebark Use pprint: https://docs.python.org/3.6/library/pprint.html
import pprint
pprint.pprint(json)
print()
compared to pprint.pprint()
print(json)
{'feed': {'title': 'W3Schools Home Page', 'title_detail': {'type': 'text/plain', 'language': None, 'base': '', 'value': 'W3Schools Home Page'}, 'links': [{'rel': 'alternate', 'type': 'text/html', 'href': 'https://www.w3schools.com'}], 'link': 'https://www.w3schools.com', 'subtitle': 'Free web building tutorials', 'subtitle_detail': {'type': 'text/html', 'language': None, 'base': '', 'value': 'Free web building tutorials'}}, 'entries': [], 'bozo': 0, 'encoding': 'utf-8', 'version': 'rss20', 'namespaces': {}}
pprint.pprint(json)
{'bozo': 0,
'encoding': 'utf-8',
'entries': [],
'feed': {'link': 'https://www.w3schools.com',
'links': [{'href': 'https://www.w3schools.com',
'rel': 'alternate',
'type': 'text/html'}],
'subtitle': 'Free web building tutorials',
'subtitle_detail': {'base': '',
'language': None,
'type': 'text/html',
'value': 'Free web building tutorials'},
'title': 'W3Schools Home Page',
'title_detail': {'base': '',
'language': None,
'type': 'text/plain',
'value': 'W3Schools Home Page'}},
'namespaces': {},
'version': 'rss20'}
pprint
does not produce a valid JSON document. –
Meit json
module to work with the data and dictionary keys work the same with double- or single-quoted strings, but some tools, e.g. Postman and JSON Editor Online, both expect keys and values to be double-quoted (as per the JSON spec). In any case, json.org specifies the use of double quotes, which pprint
doesn't produce. E.g. pprint.pprint({"name": "Jane"})
produces {'name': 'Jane'}
. –
Selfinduction 'language': None,
in the result above, which should be "language": null
. Note the null
and the double quotes. What you do is pretty-printing a Python object. –
Rigmarole To be able to pretty print from the command line and be able to have control over the indentation etc. you can set up an alias similar to this:
alias jsonpp="python -c 'import sys, json; print json.dumps(json.load(sys.stdin), sort_keys=True, indent=2)'"
And then use the alias in one of these ways:
cat myfile.json | jsonpp
jsonpp < myfile.json
json
module provides json.tool
explicitly to avoid the need for this kind of thing. –
Ninebark def saveJson(date,fileToSave):
with open(fileToSave, 'w+') as fileToSave:
json.dump(date, fileToSave, ensure_ascii=True, indent=4, sort_keys=True)
It works to display or save it to a file.
You could try pprintjson.
Installation
$ pip3 install pprintjson
Usage
Pretty print JSON from a file using the pprintjson CLI.
$ pprintjson "./path/to/file.json"
Pretty print JSON from a stdin using the pprintjson CLI.
$ echo '{ "a": 1, "b": "string", "c": true }' | pprintjson
Pretty print JSON from a string using the pprintjson CLI.
$ pprintjson -c '{ "a": 1, "b": "string", "c": true }'
Pretty print JSON from a string with an indent of 1.
$ pprintjson -c '{ "a": 1, "b": "string", "c": true }' -i 1
Pretty print JSON from a string and save output to a file output.json.
$ pprintjson -c '{ "a": 1, "b": "string", "c": true }' -o ./output.json
Output
import pprint pprint.pprint(json)
? –
Tachycardia Here's a simple example of pretty printing JSON to the console in a nice way in Python, without requiring the JSON to be on your computer as a local file:
import pprint
import json
from urllib.request import urlopen # (Only used to get this example)
# Getting a JSON example for this example
r = urlopen("https://mdn.github.io/fetch-examples/fetch-json/products.json")
text = r.read()
# To print it
pprint.pprint(json.loads(text))
TL;DR: many ways, also consider print(yaml.dump(j, sort_keys=False))
For most uses, indent should do it:
print(json.dumps(parsed, indent=2))
A Json structure is basically tree structure. While trying to find something fancier, I came across this nice paper depicting other forms of nice trees that might be interesting: https://blog.ouseful.info/2021/07/13/exploring-the-hierarchical-structure-of-dataframes-and-csv-data/.
It has some interactive trees and even comes with some code including this collapsing tree from so:
Other samples include using plotly Here is the code example from plotly:
import plotly.express as px
fig = px.treemap(
names = ["Eve","Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
)
fig.update_traces(root_color="lightgrey")
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()
And using treelib. On that note, This github also provides nice visualizations. Here is one example using treelib:
#%pip install treelib
from treelib import Tree
country_tree = Tree()
# Create a root node
country_tree.create_node("Country", "countries")
# Group by country
for country, regions in wards_df.head(5).groupby(["CTRY17NM", "CTRY17CD"]):
# Generate a node for each country
country_tree.create_node(country[0], country[1], parent="countries")
# Group by region
for region, las in regions.groupby(["GOR10NM", "GOR10CD"]):
# Generate a node for each region
country_tree.create_node(region[0], region[1], parent=country[1])
# Group by local authority
for la, wards in las.groupby(['LAD17NM', 'LAD17CD']):
# Create a node for each local authority
country_tree.create_node(la[0], la[1], parent=region[1])
for ward, _ in wards.groupby(['WD17NM', 'WD17CD']):
# Create a leaf node for each ward
country_tree.create_node(ward[0], ward[1], parent=la[1])
# Output the hierarchical data
country_tree.show()
I have, based on this, created a function to convert json to a tree:
from treelib import Node, Tree, node
def create_node(tree, s, counter_byref, verbose, parent_id=None):
node_id = counter_byref[0]
if verbose:
print(f"tree.create_node({s}, {node_id}, parent={parent_id})")
tree.create_node(s, node_id, parent=parent_id)
counter_byref[0] += 1
return node_id
def to_compact_string(o):
if type(o) == dict:
if len(o)>1:
raise Exception()
k,v =next(iter(o.items()))
return f'{k}:{to_compact_string(v)}'
elif type(o) == list:
if len(o)>1:
raise Exception()
return f'[{to_compact_string(next(iter(o)))}]'
else:
return str(o)
def to_compact(tree, o, counter_byref, verbose, parent_id):
try:
s = to_compact_string(o)
if verbose:
print(f"# to_compact({o}) ==> [{s}]")
create_node(tree, s, counter_byref, verbose, parent_id=parent_id)
return True
except:
return False
def json_2_tree(o , parent_id=None, tree=None, counter_byref=[0], verbose=False, compact_single_dict=False, listsNodeSymbol='+'):
if tree is None:
tree = Tree()
parent_id = create_node(tree, '+', counter_byref, verbose)
if compact_single_dict and to_compact(tree, o, counter_byref, verbose, parent_id):
# no need to do more, inserted as a single node
pass
elif type(o) == dict:
for k,v in o.items():
if compact_single_dict and to_compact(tree, {k:v}, counter_byref, verbose, parent_id):
# no need to do more, inserted as a single node
continue
key_nd_id = create_node(tree, str(k), counter_byref, verbose, parent_id=parent_id)
if verbose:
print(f"# json_2_tree({v})")
json_2_tree(v , parent_id=key_nd_id, tree=tree, counter_byref=counter_byref, verbose=verbose, listsNodeSymbol=listsNodeSymbol, compact_single_dict=compact_single_dict)
elif type(o) == list:
if listsNodeSymbol is not None:
parent_id = create_node(tree, listsNodeSymbol, counter_byref, verbose, parent_id=parent_id)
for i in o:
if compact_single_dict and to_compact(tree, i, counter_byref, verbose, parent_id):
# no need to do more, inserted as a single node
continue
if verbose:
print(f"# json_2_tree({i})")
json_2_tree(i , parent_id=parent_id, tree=tree, counter_byref=counter_byref, verbose=verbose,listsNodeSymbol=listsNodeSymbol, compact_single_dict=compact_single_dict)
else: #node
create_node(tree, str(o), counter_byref, verbose, parent_id=parent_id)
return tree
Then for example:
import json
j = json.loads('{"2": 3, "4": [5, 6], "7": {"8": 9}}')
json_2_tree(j ,verbose=False,listsNodeSymbol='+' ).show()
gives:
+
├── 2
│ └── 3
├── 4
│ └── +
│ ├── 5
│ └── 6
└── 7
└── 8
└── 9
While
json_2_tree(j ,listsNodeSymbol=None, verbose=False ).show()
+
├── 2
│ └── 3
├── 4
│ ├── 5
│ └── 6
└── 7
└── 8
└── 9
And
json_2_tree(j ,compact_single_dict=True,listsNodeSymbol=None).show()
+
├── 2:3
├── 4
│ ├── 5
│ └── 6
└── 7:8:9
As you see, there are different trees one can make depending on how explicit vs. compact he wants to be. One of my favorites, and one of the most compact ones might be using yaml:
import yaml
j = json.loads('{"2": "3", "4": ["5", "6"], "7": {"8": "9"}}')
print(yaml.dump(j, sort_keys=False))
Gives the compact and unambiguous:
'2': '3'
'4':
- '5'
- '6'
'7':
'8': '9'
A very simple way is using rich. with this method you can also highlight the json
This method reads data from a json file called config.json
from rich import print_json
setup_type = open('config.json')
data = json.load(setup_type)
print_json(data=data)
I think that's better to parse the json before, to avoid errors:
def format_response(response):
try:
parsed = json.loads(response.text)
except JSONDecodeError:
return response.text
return json.dumps(parsed, ensure_ascii=True, indent=4)
I had a similar requirement to dump the contents of json file for logging, something quick and easy:
print(json.dumps(json.load(open(os.path.join('<myPath>', '<myjson>'), "r")), indent = 4 ))
if you use it often then put it in a function:
def pp_json_file(path, file):
print(json.dumps(json.load(open(os.path.join(path, file), "r")), indent = 4))
It's far from perfect, but it does the job.
data = data.replace(',"',',\n"')
you can improve it, add indenting and so on, but if you just want to be able to read a cleaner json, this is the way to go.
© 2022 - 2024 — McMap. All rights reserved.
print json.dumps(your_json_string, indent=4)
– Retrospective