First make it a double. Don't ever use float or you will have trouble using the java.lang.Math
utilities.
Now if you happen to know in advance the precision you want and it is equal or less than 15, then it becomes easy to tell your doubles to behave. Check below:
// the magic method:
public final static double makePrecise(double value, int precision) {
double pow = Math.pow(10, precision);
long powValue = Math.round(pow * value);
return powValue / pow;
}
Now whenever you make an operation, you must tell your double result to behave:
for ( double value = 0.0d; value < 1.0d; value += 0.1d )
System.out.println( makePrecise(value, 1) + " => " + value );
Output:
0.0 => 0.0
0.1 => 0.1
0.2 => 0.2
0.3 => 0.30000000000000004
0.4 => 0.4
0.5 => 0.5
0.6 => 0.6
0.7 => 0.7
0.8 => 0.7999999999999999
0.9 => 0.8999999999999999
1.0 => 0.9999999999999999
If you need more than 15 precision then you are out of luck:
for ( double value = 0.0d; value < 1.0d; value += 0.1d )
System.out.println( makePrecise(value, 16) + " => " + value );
Output:
0.0 => 0.0
0.1 => 0.1
0.2 => 0.2
0.3000000000000001 => 0.30000000000000004
0.4 => 0.4
0.5 => 0.5
0.6 => 0.6
0.7 => 0.7
0.8 => 0.7999999999999999
0.9 => 0.8999999999999999
0.9999999999999998 => 0.9999999999999999
NOTE1: For performance you should cache the Math.pow
operation in an array. Not done here for clarity.
NOTE2: That's why we never use doubles for prices, but longs where the last N (i.e. where N <= 15, usually 8) digits are the decimal digits. Then you can forget about what I wrote above :)