Consistency in the sense it is used in ACID means that all constraints are satisfied before and after any change. When a system assures that you can't read data that is inconsistent, they're saying for example that you will never read data where a child row references a non-existent parent row, or where half of a transaction has been applied but the other half hasn't yet been applied (the textbook example is debiting one bank account but not yet having credited the recipient bank account).
Replication in MySQL is asynchronous by default, or "semi-synchronous" at best. Certainly it does lag in either case. In fact, the replication replica is always lagging behind at least a fraction of a second, because the master doesn't write changes to its binary log until the transaction commits, then the replica has to download the binary log and relay the event.
But the changes are still atomic. You can't read data that is partially changed. You either read committed changes, in which case all constraints are satisfied, or else the changes haven't been committed yet, in which case you see the state of data from before the transaction began.
So you might temporarily read old data in a replication system that lags, but you won't read inconsistent data.
Whereas in an "eventually consistent" system, you might read data that is partially updated, where the one account has been debited but the second account has not yet been credited. So you can see inconsistent data.
You're right that you may need to be careful about reading from replicas if your application requires absolutely current data. Each application has a different tolerance for replication lag, and in fact within one application, different queries have different tolerance for lag. I did a presentation about this: Read/Write Splitting for MySQL and PHP (Percona webinar 2013)