I have a set of points in 2-dimensional space and need to calculate the distance from each point to each other point.
I have a relatively small number of points, maybe at most 100. But since I need to do it often and rapidly in order to determine the relationships between these moving points, and since I'm aware that iterating through the points could be as bad as O(n^2) complexity, I'm looking for ways to take advantage of numpy's matrix magic (or scipy).
As it stands in my code, the coordinates of each object are stored in its class. However, I could also update them in a numpy array when I update the class coordinate.
class Cell(object):
"""Represents one object in the field."""
def __init__(self,id,x=0,y=0):
self.m_id = id
self.m_x = x
self.m_y = y
It occurs to me to create a Euclidean distance matrix to prevent duplication, but perhaps you have a cleverer data structure.
I'm open to pointers to nifty algorithms as well.
Also, I note that there are similar questions dealing with Euclidean distance and numpy but didn't find any that directly address this question of efficiently populating a full distance matrix.
n * (n - 1) / 2
distances, which is still O(n^2). – Zebrawoodscipy
can be used, considerscipy.spatial.distance_matrix
– Kerekes