In Spark, we had the same problem. We're using the following:
from pyspark.sql.functions import *
@udf
def concatenated_json_to_array(text):
final = "["
separator = ""
for part in text.split("}{"):
final += separator + part
separator = "}{" if re.search(r':\s*"([^"]|(\\"))*$', final) else "},{"
return final + "]"
def read_concatenated_json(path, schema):
return (spark.read
.option("lineSep", None)
.text(path)
.withColumn("value", concatenated_json_to_array("value"))
.withColumn("value", from_json("value", schema))
.withColumn("value", explode("value"))
.select("value.*"))
It works as follows:
- Read the data as one string per file (no delimiters!)
- Use a UDF to introduce the JSON array and split the JSON objects by introducing a comma. Note: be careful not to break any strings with
}{
in them!
- Parse the JSON with a schema into DataFrame fields.
- Explode the array into separate rows
- Expand the value object into column.
Use it like this:
from pyspark.sql.types import *
schema = ArrayType(
StructType([
StructField("type", StringType(), True),
StructField("value", StructType([
StructField("id", IntegerType(), True),
StructField("joke", StringType(), True),
StructField("categories", ArrayType(StringType()), True)
]), True)
])
)
path = '/mnt/my_bucket_name/messages/*/*/*/*/'
df = read_concatenated_json(path, schema)
I've written more details and considerations here: Parsing JSON data from S3 (Kinesis) with Spark. Do not just split by }{
, as it can mess up your string data! For example: { "line": "a\"r}{t" }
.