In Julia vec
reshapes multidimensional arrays into one-dimension arrays.
However it doesn't work for arrays of arrays or arrays of tuples.
A part from using array comprehension, is there another way to flatten arrays of arrays/tuples? Or arrays of arrays/tuples of arrays/tuples? Or ...
Iterators.flatten(x)
creates a generator that iterates over each element of x
. It can handle some of the cases you describe, eg
julia> collect(Iterators.flatten([(1,2,3),[4,5],6]))
6-element Array{Any,1}:
1
2
3
4
5
6
If you have arrays of arrays of arrays and tuples, you should probably reconsider your data structure because it doesn't sound type stable. However, you can use multiple calls to flatten
, eg
julia> collect(Iterators.flatten([(1,2,[3,3,3,3]),[4,5],6]))
6-element Array{Any,1}:
1
2
[3, 3, 3, 3]
4
5
6
julia> collect(Iterators.flatten(Iterators.flatten([(1,2,[3,3,3,3]),[4,5],6])))
9-element Array{Any,1}:
1
2
3
3
3
3
4
5
6
Note how all of my example return an Array{Any,1}
. That is a bad sign for performance, because it means the compiler could not determine a single concrete type for the elements of the output array. I chose these example because the way I read your question it sounded like you may have type unstable containers already.
Iterators
is now built into base, the old Iterators
package is deprecated. I don't know what happens if you install it now, but if you have any problems uninstall it. You need to using Base.Iterators
to get the exported methods (including flatten
) or import Base.Iterators: flatten
to get just one. –
Arianism 6-element Vector{Int64}
. –
Pirogue In order to flatten an array of arrays, you can simply use vcat() like this:
julia> A = [[1,2,3],[4,5], [6,7]]
Vector{Int64}[3]
Int64[3]
Int64[2]
Int64[2]
julia> flat = vcat(A...)
Int64[7]
1
2
3
4
5
6
7
The simplest way is to apply the ellipsis ...
twice.
A = [[1,2,3],[4,5], [6,7]]
flat = [(A...)...]
println(flat)
The output would be
[1, 2, 3, 4, 5, 6, 7]
.
x = [rand(n) for n in rand(1:20, 100000)]
. Compare the difference between @btime [(x...)...]
(21.215 ms and 1049049 allocations) to @btime vcat(x...)
(2.836ms and 3 allocations). –
Conceited If you use VectorOfArray
from RecursiveArrayTools.jl, it uses the indexing fallback to provide convert(Array,A)
for a VectorOfArray
A
.
julia> using RecursiveArrayTools
julia> A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3-element Array{Array{Int64,1},1}:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
julia> VA = VectorOfArray(A)
3-element Array{Array{Int64,1},1}:
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
First of it acts as a lazy wrapper for doing the indexing without conversion:
julia> VA[1,3]
7
Note that columns are the separate arrays so that way it's still "column-major" (i.e. efficient to index down columns). But then it has a straight conversion:
julia> convert(Array,VA)
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
The other way to handle this conversion is to do something like hcat(A...)
, but that's slow if you have a lot of arrays you're splatting!
Now, you may think: what about writing a function that pre-allocates the matrix, then loops through and fills it? That's almost what convert
on the VectorOfArray
works, except the fallback that convert
uses here utilizes Tim Holy's Cartesian machinery. At one point, I wrote that function:
function vecvec_to_mat(vecvec)
mat = Matrix{eltype(eltype(vecvec))}(length(vecvec),length(vecvec[1]))
for i in 1:length(vecvec)
mat[i,:] .= vecvec[i]
end
mat
end
but I have since gotten rid of it because the fallback was much faster. So, YMMV but that's a few ways to solve your problem.
for Julia 0.7x:
for Arrays:
flat(arr::Array) = mapreduce(x -> isa(x, Array) ? flat(x) : x, append!, arr,init=[])
for Tuples:
flat(arr::Tuple) = mapreduce(x -> isa(x, Tuple) ? flat(x) : x, append!, arr,init=[])
Works for arbitrary depth. see: https://rosettacode.org/wiki/Flatten_a_list#Julia Code for Array/Tuple:
function flatten(arr)
rst = Any[]
grep(v) = for x in v
if isa(x, Tuple) || isa(x, Array)
grep(x)
else push!(rst, x) end
end
grep(arr)
rst
end
© 2022 - 2024 — McMap. All rights reserved.