3d reconstruction from 2 images without info about the camera
Asked Answered
M

3

36

I'm new in this field and I'm trying to model a simple scene in 3d out of 2d images and I dont have any info about cameras. I know that there are 3 options:

  • I have two images and I know the model of my camera (intrisics) that I loaded from a XML for instance loadXMLFromFile() => stereoRectify() => reprojectImageTo3D()

  • I don't have them but I can calibrate my camera => stereoCalibrate() => stereoRectify() => reprojectImageTo3D()

  • I can't calibrate the camera (it is my case, because I don't have the camera that has taken the 2 images, then I need to find pair keypoints on both images with SURF, SIFT for instance (I can use any blob detector actually), then compute descriptors of these keypoints, then match keypoints from image right and image left according to their descriptors, and then find the fundamental matrix from them. The processing is much harder and would be like this:

    1. detect keypoints (SURF, SIFT) =>
    2. extract descriptors (SURF,SIFT) =>
    3. compare and match descriptors (BruteForce, Flann based approaches) =>
    4. find fundamental mat (findFundamentalMat()) from these pairs =>
    5. stereoRectifyUncalibrated() =>
    6. reprojectImageTo3D()

I'm using the last approach and my questions are:

1) Is it right?

2) if it's ok, I have a doubt about the last step stereoRectifyUncalibrated() => reprojectImageTo3D(). The signature of reprojectImageTo3D() function is:

void reprojectImageTo3D(InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int depth=-1 )

cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true) (in my code)

Parameters:

  • disparity – Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image.
  • _3dImage – Output 3-channel floating-point image of the same size as disparity. Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map.
  • Q – 4x4 perspective transformation matrix that can be obtained with stereoRectify().
  • handleMissingValues – Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoBM::operator()) are transformed to 3D points with a very large Z value (currently set to 10000).
  • ddepth – The optional output array depth. If it is -1, the output image will have CV_32F depth. ddepth can also be set to CV_16S, CV_32S or `CV_32F'.

How can I get the Q matrix? Is possible to obtain the Q matrix with F, H1 and H2 or in another way?

3) Is there another way for obtain the xyz coordinates without calibrating the cameras?

My code is:

#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <conio.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>


using namespace cv;
using namespace std;

int main(int argc, char *argv[]){

    // Read the images
    Mat imgLeft = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
    Mat imgRight = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );

    // check
    if (!imgLeft.data || !imgRight.data)
            return 0;

    // 1] find pair keypoints on both images (SURF, SIFT):::::::::::::::::::::::::::::

    // vector of keypoints
    std::vector<cv::KeyPoint> keypointsLeft;
    std::vector<cv::KeyPoint> keypointsRight;

    // Construct the SURF feature detector object
    cv::SiftFeatureDetector sift(
            0.01, // feature threshold
            10); // threshold to reduce
                // sensitivity to lines
                // Detect the SURF features

    // Detection of the SIFT features
    sift.detect(imgLeft,keypointsLeft);
    sift.detect(imgRight,keypointsRight);

    std::cout << "Number of SURF points (1): " << keypointsLeft.size() << std::endl;
    std::cout << "Number of SURF points (2): " << keypointsRight.size() << std::endl;

    // 2] compute descriptors of these keypoints (SURF,SIFT) ::::::::::::::::::::::::::

    // Construction of the SURF descriptor extractor
    cv::SurfDescriptorExtractor surfDesc;

    // Extraction of the SURF descriptors
    cv::Mat descriptorsLeft, descriptorsRight;
    surfDesc.compute(imgLeft,keypointsLeft,descriptorsLeft);
    surfDesc.compute(imgRight,keypointsRight,descriptorsRight);

    std::cout << "descriptor matrix size: " << descriptorsLeft.rows << " by " << descriptorsLeft.cols << std::endl;

    // 3] matching keypoints from image right and image left according to their descriptors (BruteForce, Flann based approaches)

    // Construction of the matcher
    cv::BruteForceMatcher<cv::L2<float> > matcher;

    // Match the two image descriptors
    std::vector<cv::DMatch> matches;
    matcher.match(descriptorsLeft,descriptorsRight, matches);

    std::cout << "Number of matched points: " << matches.size() << std::endl;


    // 4] find the fundamental mat ::::::::::::::::::::::::::::::::::::::::::::::::::::

    // Convert 1 vector of keypoints into
    // 2 vectors of Point2f for compute F matrix
    // with cv::findFundamentalMat() function
    std::vector<int> pointIndexesLeft;
    std::vector<int> pointIndexesRight;
    for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {

         // Get the indexes of the selected matched keypoints
         pointIndexesLeft.push_back(it->queryIdx);
         pointIndexesRight.push_back(it->trainIdx);
    }

    // Convert keypoints into Point2f
    std::vector<cv::Point2f> selPointsLeft, selPointsRight;
    cv::KeyPoint::convert(keypointsLeft,selPointsLeft,pointIndexesLeft);
    cv::KeyPoint::convert(keypointsRight,selPointsRight,pointIndexesRight);

    /* check by drawing the points
    std::vector<cv::Point2f>::const_iterator it= selPointsLeft.begin();
    while (it!=selPointsLeft.end()) {

            // draw a circle at each corner location
            cv::circle(imgLeft,*it,3,cv::Scalar(255,255,255),2);
            ++it;
    }

    it= selPointsRight.begin();
    while (it!=selPointsRight.end()) {

            // draw a circle at each corner location
            cv::circle(imgRight,*it,3,cv::Scalar(255,255,255),2);
            ++it;
    } */

    // Compute F matrix from n>=8 matches
    cv::Mat fundemental= cv::findFundamentalMat(
            cv::Mat(selPointsLeft), // points in first image
            cv::Mat(selPointsRight), // points in second image
            CV_FM_RANSAC);       // 8-point method

    std::cout << "F-Matrix size= " << fundemental.rows << "," << fundemental.cols << std::endl;

    /* draw the left points corresponding epipolar lines in right image
    std::vector<cv::Vec3f> linesLeft;
    cv::computeCorrespondEpilines(
            cv::Mat(selPointsLeft), // image points
            1,                      // in image 1 (can also be 2)
            fundemental,            // F matrix
            linesLeft);             // vector of epipolar lines

    // for all epipolar lines
    for (vector<cv::Vec3f>::const_iterator it= linesLeft.begin(); it!=linesLeft.end(); ++it) {

        // draw the epipolar line between first and last column
        cv::line(imgRight,cv::Point(0,-(*it)[2]/(*it)[1]),cv::Point(imgRight.cols,-((*it)[2]+(*it)[0]*imgRight.cols)/(*it)[1]),cv::Scalar(255,255,255));
    }

    // draw the left points corresponding epipolar lines in left image
    std::vector<cv::Vec3f> linesRight;
    cv::computeCorrespondEpilines(cv::Mat(selPointsRight),2,fundemental,linesRight);
    for (vector<cv::Vec3f>::const_iterator it= linesRight.begin(); it!=linesRight.end(); ++it) {

        // draw the epipolar line between first and last column
        cv::line(imgLeft,cv::Point(0,-(*it)[2]/(*it)[1]), cv::Point(imgLeft.cols,-((*it)[2]+(*it)[0]*imgLeft.cols)/(*it)[1]), cv::Scalar(255,255,255));
    }

    // Display the images with points and epipolar lines
    cv::namedWindow("Right Image Epilines");
    cv::imshow("Right Image Epilines",imgRight);
    cv::namedWindow("Left Image Epilines");
    cv::imshow("Left Image Epilines",imgLeft);
    */

    // 5] stereoRectifyUncalibrated()::::::::::::::::::::::::::::::::::::::::::::::::::

    //H1, H2 – The output rectification homography matrices for the first and for the second images.
    cv::Mat H1(4,4, imgRight.type());
    cv::Mat H2(4,4, imgRight.type());
    cv::stereoRectifyUncalibrated(selPointsRight, selPointsLeft, fundemental, imgRight.size(), H1, H2);


    // create the image in which we will save our disparities
    Mat imgDisparity16S = Mat( imgLeft.rows, imgLeft.cols, CV_16S );
    Mat imgDisparity8U = Mat( imgLeft.rows, imgLeft.cols, CV_8UC1 );

    // Call the constructor for StereoBM
    int ndisparities = 16*5;      // < Range of disparity >
    int SADWindowSize = 5;        // < Size of the block window > Must be odd. Is the 
                                  // size of averaging window used to match pixel  
                                  // blocks(larger values mean better robustness to
                                  // noise, but yield blurry disparity maps)

    StereoBM sbm( StereoBM::BASIC_PRESET,
        ndisparities,
        SADWindowSize );

    // Calculate the disparity image
    sbm( imgLeft, imgRight, imgDisparity16S, CV_16S );

    // Check its extreme values
    double minVal; double maxVal;

    minMaxLoc( imgDisparity16S, &minVal, &maxVal );

    printf("Min disp: %f Max value: %f \n", minVal, maxVal);

    // Display it as a CV_8UC1 image
    imgDisparity16S.convertTo( imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));

    namedWindow( "windowDisparity", CV_WINDOW_NORMAL );
    imshow( "windowDisparity", imgDisparity8U );


    // 6] reprojectImageTo3D() :::::::::::::::::::::::::::::::::::::::::::::::::::::

    //Mat xyz;
    //cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true);

    //How can I get the Q matrix? Is possibile to obtain the Q matrix with 
    //F, H1 and H2 or in another way?
    //Is there another way for obtain the xyz coordinates?

    cv::waitKey();
    return 0;
}
Melodie answered 26/1, 2012 at 22:43 Comment(7)
I think it is but you are missing something. Disparity can be obtained with several functions, you should check the openCV documentations. opencv.willowgarage.com/documentation/…Vidovik
@Vidovik ok...but can you be more specific please? If you consider my code, what kind of function I can use? This is my code:Melodie
I don't know cause I haven't used the functions with disparity as input, but if I was doing your work I would simply try one of them, e.g. cvFindStereoCorrespondenceBM(). The problem is that I don't don't know how to get state, that's why I wasn't specific. But you can try to manually give values (invented) just to be able to compute something. The more you try and mistake the more you will learn. I am sorry I cannot help more.Vidovik
@Vidovik thanks for your help. I solved the previous step but now I have another problem...Melodie
@jmartel what do you think about this?Melodie
is this what you are looking for? youtube.com/…Toponym
Seçkin Savaşçı, and how is it supposed to help??Kucera
T
5

StereoRectifyUncalibrated calculates simply planar perspective transformation not rectification transformation in object space. It is necessary to convert this planar transformation to object space transformation to extract Q matrice, and i think some of the camera calibration parameters are required for it( like camera intrinsics ). There may have some research topics ongoing with this subject.

You may have add some steps for estimating camera intrinsics, and extracting relative orientation of cameras to make your flow work right. I think camera calibration parameters are vital for extracting proper 3d structure of the scene, if there is no active lighting method is used.

Also bundle block adjustment based solutions are required for refining all estimated values to more accurate values.

Trinia answered 22/5, 2012 at 7:57 Comment(0)
C
2
  1. the procedure looks OK to me .

  2. as far as I know, regarding Image based 3D modelling, cameras are explicitly calibrated or implicitly calibrated. you don't want to explicitly calibrating the camera. you will make use of those things anyway. matching corresponding point pairs are definitely a heavily used approach.

Catchweight answered 29/5, 2012 at 1:49 Comment(0)
A
1

I think you need to use StereoRectify to rectify your images and get Q. This function needs two parameters (R and T) the rotation and translation between two cameras. So you can compute the parameters using solvePnP. This function needs some 3d real coordinates of the certain object and 2d points in images and their corresponding points

Allisonallissa answered 14/7, 2013 at 23:13 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.