There is a practical solution: Your cost function can be written by you, to put high cost onto negative weights. I did this in a matrix factorization model in TensorFlow with python, and it worked well enough. Right? I mean it's obvious. But nobody else mentioned it so here you go. EDIT: I just saw that Mark Borderding also gave another loss and cost-based solution implementation before I did.
And if "the best way" is wanted, as the OP asked, what then? Well "best" might actually be application-specific, in which case you'd need to try a few different ways with your dataset and consider your application requirements.
Here is working code for increasing the cost for unwanted negative solution variables:
cost = tf.reduce_sum(keep_loss) + Lambda * reg # Cost = sum of losses for training set, except missing data.
if prefer_nonneg: # Optionally increase cost for negative values in rhat, if you want that.
negs_indices = tf.where(rhat < tf.constant(0.0))
neg_vals = tf.gather_nd(rhat, negs_indices)
cost += 2. * tf.reduce_sum(tf.abs(neg_vals)) # 2 is a magic number (empirical parameter)
You are free to use my code but please give me some credit if you choose to use it. Give a link to this answer on stackoverflow.com please.
This design would be considered a soft constraint, because you can still get negative weights, if you let it, depending on your cost definition.
It seems that constraint= is also available in TF v1.4+ as a parameter to tf.get_variable(), where you can pass a function like tf.clip_by_value. This seems like another soft constraint, not hard constraint, in my opinion, because it depends on your function to work well or not. It also might be slow, as the other answerer tried the same function and reported it was slow to converge, although they didn't use the constraint= parameter to do this. I don't see any reason why one would be any faster than the other since they both use the same clipping approach. So if you use the constraint= parameter then you should expect slow convergence in the context of the original poster's application.
It would be nicer if also TF provided true hard constraints to the API, and let TF figure out how to both implement that as well as make it efficient on the back end. I mean, I have seen this done in linear programming solvers already for a long time. The application declares a constraint, and the back end makes it happen.