The accepted answer answers the question in that it provides the answers to the asked questions.
Q: What is the best way to check whether a given object is of a given type? How about checking whether the object inherits from a given type?
A: Use isinstance, issubclass, type
to check based on types.
As other answers and comments are quick to point out however, there's a lot more to the idea of "type-checking" than that in python. Since the addition of Python 3 and type hints, much has changed as well. Below, I go over some of the difficulties with type checking, duck typing, and exception handling. For those that think type checking isn't what is needed (it usually isn't, but we're here), I also point out how type hints can be used instead.
Type Checking
Type checking is not always an appropriate thing to do in python. Consider the following example:
def sum(nums):
"""Expect an iterable of integers and return the sum."""
result = 0
for n in nums:
result += n
return result
To check if the input is an iterable of integers, we run into a major issue. The only way to check if every element is an integer would be to loop through to check each element. But if we loop through the entire iterator, then there will be nothing left for intended code. We have two options in this kind of situation.
Check as we loop.
Check beforehand but store everything as we check.
Option 1 has the downside of complicating our code, especially if we need to perform similar checks in many places. It forces us to move type checking from the top of the function to everywhere we use the iterable in our code.
Option 2 has the obvious downside that it destroys the entire purpose of iterators. The entire point is to not store the data because we shouldn't need to.
One might also think that checking if checking all of the elements is too much then perhaps we can just check if the input itself is of the type iterable, but there isn't actually any iterable base class. Any type implementing __iter__
is iterable.
Exception Handling and Duck Typing
An alternative approach would be to forgo type checking altogether and focus on exception handling and duck typing instead. That is to say, wrap your code in a try-except block and catch any errors that occur. Alternatively, don't do anything and let exceptions rise naturally from your code.
Here's one way to go about catching an exception.
def sum(nums):
"""Try to catch exceptions?"""
try:
result = 0
for n in nums:
result += n
return result
except TypeError as e:
print(e)
Compared to the options before, this is certainly better. We're checking as we run the code. If there's a TypeError
anywhere, we'll know. We don't have to place a check everywhere that we loop through the input. And we don't have to store the input as we iterate over it.
Furthermore, this approach enables duck typing. Rather than checking for specific types
, we have moved to checking for specific behaviors
and look for when the input fails to behave as expected (in this case, looping through nums
and being able to add n
).
However, the exact reasons which make exception handling nice can also be their downfall.
A float
isn't an int
, but it satisfies the behavioral requirements to work.
It is also bad practice to wrap the entire code with a try-except block.
At first these may not seem like issues, but here's some reasons that may change your mind.
A user can no longer expect our function to return an int
as intended. This may break code elsewhere.
Since exceptions can come from a wide variety of sources, using the try-except on the whole code block may end up catching exceptions you didn't intend to. We only wanted to check if nums
was iterable and had integer elements.
Ideally we'd like to catch exceptions our code generators and raise, in their place, more informative exceptions. It's not fun when an exception is raised from someone else's code with no explanation other than a line you didn't write and that some TypeError
occured.
In order to fix the exception handling in response to the above points, our code would then become this... abomination.
def sum(nums):
"""
Try to catch all of our exceptions only.
Re-raise them with more specific details.
"""
result = 0
try:
iter(nums)
except TypeError as e:
raise TypeError("nums must be iterable")
for n in nums:
try:
result += int(n)
except TypeError as e:
raise TypeError("stopped mid iteration since a non-integer was found")
return result
You can kinda see where this is going. The more we try to "properly" check things, the worse our code is looking. Compared to the original code, this isn't readable at all.
We could argue perhaps this is a bit extreme. But on the other hand, this is only a very simple example. In practice, your code is probably much more complicated than this.
Type Hints
We've seen what happens when we try to modify our small example to "enable type checking". Rather than focusing on trying to force specific types, type hinting allows for a way to make types clear to users.
from typing import Iterable
def sum(nums: Iterable[int]) -> int:
result = 0
for n in nums:
result += n
return result
Here are some advantages to using type-hints.
The code actually looks good now!
Static type analysis may be performed by your editor if you use type hints!
They are stored on the function/class, making them dynamically usable e.g. typeguard
and dataclasses
.
They show up for functions when using help(...)
.
No need to sanity check if your input type is right based on a description or worse lack thereof.
You can "type" hint based on structure e.g. "does it have this attribute?" without requiring subclassing by the user.
The downside to type hinting?
- Type hints are nothing more than syntax and special text on their own. It isn't the same as type checking.
In other words, it doesn't actually answer the question because it doesn't provide type checking. Regardless, however, if you are here for type checking, then you should be type hinting as well. Of course, if you've come to the conclusion that type checking isn't actually necessary but you want some semblance of typing, then type hints are for you.