How to write spark streaming DF to Kafka topic
Asked Answered
T

8

37

I am using Spark Streaming to process data between two Kafka queues but I can not seem to find a good way to write on Kafka from Spark. I have tried this:

input.foreachRDD(rdd =>
  rdd.foreachPartition(partition =>
    partition.foreach {
      case x: String => {
        val props = new HashMap[String, Object]()

        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
          "org.apache.kafka.common.serialization.StringSerializer")
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
          "org.apache.kafka.common.serialization.StringSerializer")

        println(x)
        val producer = new KafkaProducer[String, String](props)
        val message = new ProducerRecord[String, String]("output", null, x)
        producer.send(message)
      }
    }
  )
)

and it works as intended but instancing a new KafkaProducer for every message is clearly unfeasible in a real context and I'm trying to work around it.

I would like to keep a reference to a single instance for every process and access it when I need to send a message. How can I write to Kafka from Spark Streaming?

Trickle answered 23/7, 2015 at 14:39 Comment(1)
F
23

My first advice would be to try to create a new instance in foreachPartition and measure if that is fast enough for your needs (instantiating heavy objects in foreachPartition is what the official documentation suggests).

Another option is to use an object pool as illustrated in this example:

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/PooledKafkaProducerAppFactory.scala

I however found it hard to implement when using checkpointing.

Another version that is working well for me is a factory as described in the following blog post, you just have to check if it provides enough parallelism for your needs (check the comments section):

http://allegro.tech/2015/08/spark-kafka-integration.html

Filbert answered 23/7, 2015 at 15:19 Comment(3)
What was the issue you ran into with regards to checkpointing?Coccidioidomycosis
foreachPartition will be good if we are working with fixed number of RDDs, but in Spark Streaming (where we have micro-batches) RDDs are created eternally and so does partitions. How to circumvent this in Spark Streaming?Murdock
Please include the content of the link(s) so that when they break your answer still has value.Sundaysundberg
C
35

Yes, unfortunately Spark (1.x, 2.x) doesn't make it straight-forward how to write to Kafka in an efficient manner.

I'd suggest the following approach:

  • Use (and re-use) one KafkaProducer instance per executor process/JVM.

Here's the high-level setup for this approach:

  1. First, you must "wrap" Kafka's KafkaProducer because, as you mentioned, it is not serializable. Wrapping it allows you to "ship" it to the executors. The key idea here is to use a lazy val so that you delay instantiating the producer until its first use, which is effectively a workaround so that you don't need to worry about KafkaProducer not being serializable.
  2. You "ship" the wrapped producer to each executor by using a broadcast variable.
  3. Within your actual processing logic, you access the wrapped producer through the broadcast variable, and use it to write processing results back to Kafka.

The code snippets below work with Spark Streaming as of Spark 2.0.

Step 1: Wrapping KafkaProducer

import java.util.concurrent.Future

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}

class MySparkKafkaProducer[K, V](createProducer: () => KafkaProducer[K, V]) extends Serializable {

  /* This is the key idea that allows us to work around running into
     NotSerializableExceptions. */
  lazy val producer = createProducer()

  def send(topic: String, key: K, value: V): Future[RecordMetadata] =
    producer.send(new ProducerRecord[K, V](topic, key, value))

  def send(topic: String, value: V): Future[RecordMetadata] =
    producer.send(new ProducerRecord[K, V](topic, value))

}

object MySparkKafkaProducer {

  import scala.collection.JavaConversions._

  def apply[K, V](config: Map[String, Object]): MySparkKafkaProducer[K, V] = {
    val createProducerFunc = () => {
      val producer = new KafkaProducer[K, V](config)

      sys.addShutdownHook {
        // Ensure that, on executor JVM shutdown, the Kafka producer sends
        // any buffered messages to Kafka before shutting down.
        producer.close()
      }

      producer
    }
    new MySparkKafkaProducer(createProducerFunc)
  }

  def apply[K, V](config: java.util.Properties): MySparkKafkaProducer[K, V] = apply(config.toMap)

}

Step 2: Use a broadcast variable to give each executor its own wrapped KafkaProducer instance

import org.apache.kafka.clients.producer.ProducerConfig

val ssc: StreamingContext = {
  val sparkConf = new SparkConf().setAppName("spark-streaming-kafka-example").setMaster("local[2]")
  new StreamingContext(sparkConf, Seconds(1))
}

ssc.checkpoint("checkpoint-directory")

val kafkaProducer: Broadcast[MySparkKafkaProducer[Array[Byte], String]] = {
  val kafkaProducerConfig = {
    val p = new Properties()
    p.setProperty("bootstrap.servers", "broker1:9092")
    p.setProperty("key.serializer", classOf[ByteArraySerializer].getName)
    p.setProperty("value.serializer", classOf[StringSerializer].getName)
    p
  }
  ssc.sparkContext.broadcast(MySparkKafkaProducer[Array[Byte], String](kafkaProducerConfig))
}

Step 3: Write from Spark Streaming to Kafka, re-using the same wrapped KafkaProducer instance (for each executor)

import java.util.concurrent.Future
import org.apache.kafka.clients.producer.RecordMetadata

val stream: DStream[String] = ???
stream.foreachRDD { rdd =>
  rdd.foreachPartition { partitionOfRecords =>
    val metadata: Stream[Future[RecordMetadata]] = partitionOfRecords.map { record =>
      kafkaProducer.value.send("my-output-topic", record)
    }.toStream
    metadata.foreach { metadata => metadata.get() }
  }
}

Hope this helps.

Coccidioidomycosis answered 16/9, 2016 at 19:56 Comment(5)
If I may ask, how to implement this idea in Python, especially the lazy part?Off
in Step 3: what is the use of the metadata: Stream[Future[RecordMetadata]]. I don't think I see it being used anywhere. And what could it be used for?Leslielesly
The metadata is literally used in the next statement, which ensures that the next partition is only processed (via foreachPartition) once all futures for the current partition have completed (cf. metadata.get()).Coccidioidomycosis
Thanks for the response! I'm not sure though what is the issue if we don't wait for all futures for a partition to complete processing? Why even use a future if we need to wait for each partition to process first before going to the next?Leslielesly
Hi, Any reason to Broadcast the Lazy Object. Can't I create MySparkKafkaProducer object per worker node when Spark Cluster initialized??Yawn
F
23

My first advice would be to try to create a new instance in foreachPartition and measure if that is fast enough for your needs (instantiating heavy objects in foreachPartition is what the official documentation suggests).

Another option is to use an object pool as illustrated in this example:

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/PooledKafkaProducerAppFactory.scala

I however found it hard to implement when using checkpointing.

Another version that is working well for me is a factory as described in the following blog post, you just have to check if it provides enough parallelism for your needs (check the comments section):

http://allegro.tech/2015/08/spark-kafka-integration.html

Filbert answered 23/7, 2015 at 15:19 Comment(3)
What was the issue you ran into with regards to checkpointing?Coccidioidomycosis
foreachPartition will be good if we are working with fixed number of RDDs, but in Spark Streaming (where we have micro-batches) RDDs are created eternally and so does partitions. How to circumvent this in Spark Streaming?Murdock
Please include the content of the link(s) so that when they break your answer still has value.Sundaysundberg
G
13

With Spark >= 2.2

Both read and write operations are possible on Kafka using Structured Streaming API

Build stream from Kafka topic

// Subscribe to a topic and read messages from the earliest to latest offsets
val ds= spark
  .readStream // use `read` for batch, like DataFrame
  .format("kafka")
  .option("kafka.bootstrap.servers", "brokerhost1:port1,brokerhost2:port2")
  .option("subscribe", "source-topic1")
  .option("startingOffsets", "earliest")
  .option("endingOffsets", "latest")
  .load()

Read the key and value and apply the schema for both, for simplicity we are making converting both of them to String type.

val dsStruc = ds.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .as[(String, String)]

Since dsStruc have the schema, it accepts all SQL kind operations like filter, agg, select ..etc on it.

Write stream to Kafka topic

dsStruc
  .writeStream // use `write` for batch, like DataFrame
  .format("kafka")
  .option("kafka.bootstrap.servers", "brokerhost1:port1,brokerhost2:port2")
  .option("topic", "target-topic1")
  .start()

More configuration for Kafka integration to read or write

Key artifacts to add in the application

 "org.apache.spark" % "spark-core_2.11" % 2.2.0,
 "org.apache.spark" % "spark-streaming_2.11" % 2.2.0,
 "org.apache.spark" % "spark-sql-kafka-0-10_2.11" % 2.2.0,
Gentian answered 11/11, 2018 at 15:26 Comment(1)
just thought of asking, how many producer instances are used when you are doing structred streaming way. will the producer instance will be broadcasted ? like step2 of thisAutography
T
8

There is a Streaming Kafka Writer maintained by Cloudera (actually spun off from a Spark JIRA [1]). It basically creates a producer per partition, which amortizes the time spent to create 'heavy' objects over a (hopefully large) collection of elements.

The Writer can be found here: https://github.com/cloudera/spark-kafka-writer

Tahr answered 23/7, 2015 at 23:31 Comment(2)
404 Not found for that project, removed? github.com/cloudera/spark-kafka-writerCoherent
Nowadays there's github.com/BenFradet/spark-kafka-writer (same name, but not sure whether it's the same code)Coccidioidomycosis
M
8

I was having the same issue and found this post.

The author solves the problem by creating 1 producer per executor. Instead of sending the producer itself, he sends only a “recipe” how to create a producer in an executor by broadcasting it.

    val kafkaSink = sparkContext.broadcast(KafkaSink(conf))

He uses a wrapper that lazily creates the producer:

    class KafkaSink(createProducer: () => KafkaProducer[String, String]) extends Serializable {

      lazy val producer = createProducer()

      def send(topic: String, value: String): Unit = producer.send(new     ProducerRecord(topic, value))
    }


    object KafkaSink {
      def apply(config: Map[String, Object]): KafkaSink = {
        val f = () => {
          val producer = new KafkaProducer[String, String](config)

          sys.addShutdownHook {
            producer.close()
          }

          producer
        }
        new KafkaSink(f)
      }
    }

The wrapper is serializable because the Kafka producer is initialized just before first use on an executor. The driver keeps the reference to the wrapper and the wrapper sends the messages using each executor's producer:

    dstream.foreachRDD { rdd =>
      rdd.foreach { message =>
        kafkaSink.value.send("topicName", message)
      }
    }
Mcavoy answered 7/9, 2016 at 8:50 Comment(1)
What prevents me from having a singleton class in my JARs, that has the kafka producer in it. This way, I don't need a broadcast variable. Just having a singleton KafkaSink will ensure one KafkaSink per executor, as a singleton will be initialized once per JVM (aka executor).Gott
A
3

Why is it infeasible? Fundamentally each partition of each RDD is going to run independently (and may well run on a different cluster node), so you have to redo the connection (and any synchronization) at the start of each partition's task. If the overhead of that is too high then you should increase the batch size in your StreamingContext until it becomes acceptable (obv. there's a latency cost to doing this).

(If you're not handling thousands of messages in each partition, are you sure you need spark-streaming at all? Would you do better with a standalone application?)

Ashby answered 23/7, 2015 at 15:53 Comment(0)
G
2

This might be what you want to do. You basically create one producer for each partition of records.

input.foreachRDD(rdd =>
      rdd.foreachPartition(
          partitionOfRecords =>
            {
                val props = new HashMap[String, Object]()
                props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
                props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
                  "org.apache.kafka.common.serialization.StringSerializer")
                props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
                  "org.apache.kafka.common.serialization.StringSerializer")
                val producer = new KafkaProducer[String,String](props)

                partitionOfRecords.foreach
                {
                    case x:String=>{
                        println(x)

                        val message=new ProducerRecord[String, String]("output",null,x)
                        producer.send(message)
                    }
                }
          })
) 

Hope that helps

Gert answered 24/7, 2015 at 3:59 Comment(2)
new KafkaProducer can be broadcasted and re-used foreach partition.... since it asynchronously buffers its an optimized way to do that. see this https://mcmap.net/q/413869/-how-to-write-spark-streaming-df-to-kafka-topic step-2Autography
@BdEngineer I think you just need to understand DataFrames better. There's an answer already that mentions this. If you can try to understand the context of what a Dataframe is and read for each partition etc's api docs you will make a connection.Gert
G
0

With Spark < 2.2

Since there is no direct way of writing the messages to Kafka from Spark Streaming

Create a KafkaSinkWritter

import java.util.Properties
import org.apache.kafka.clients.producer._
import org.apache.spark.sql.ForeachWriter


 class  KafkaSink(topic:String, servers:String) extends ForeachWriter[(String, String)] {
      val kafkaProperties = new Properties()
      kafkaProperties.put("bootstrap.servers", servers)
      kafkaProperties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
      kafkaProperties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
      val results = new scala.collection.mutable.HashMap[String, String]
      var producer: KafkaProducer[String, String] = _

      def open(partitionId: Long,version: Long): Boolean = {
        producer = new KafkaProducer(kafkaProperties)
        true
      }

      def process(value: (String, String)): Unit = {
          producer.send(new ProducerRecord(topic, value._1 + ":" + value._2))
      }

      def close(errorOrNull: Throwable): Unit = {
        producer.close()
      }
   }

Write messages using SinkWriter

val topic = "<topic2>"
val brokers = "<server:ip>"

val writer = new KafkaSink(topic, brokers)

val query =
  streamingSelectDF
    .writeStream
    .foreach(writer)
    .outputMode("update")
    .trigger(ProcessingTime("25 seconds"))
    .start()

Reference link

Gentian answered 8/9, 2020 at 4:31 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.