How would I be able to cycle through an image using opencv as if it were a 2d array to get the rgb values of each pixel? Also, would a mat be preferable over an iplimage for this operation?
If you use C++, use the C++ interface of opencv and then you can access the members via http://docs.opencv.org/2.4/doc/tutorials/core/how_to_scan_images/how_to_scan_images.html#the-efficient-way or using cv::Mat::at(), for example.
cv::Mat
is preferred over IplImage
because it simplifies your code
cv::Mat img = cv::imread("lenna.png");
for(int i=0; i<img.rows; i++)
for(int j=0; j<img.cols; j++)
// You can now access the pixel value with cv::Vec3b
std::cout << img.at<cv::Vec3b>(i,j)[0] << " " << img.at<cv::Vec3b>(i,j)[1] << " " << img.at<cv::Vec3b>(i,j)[2] << std::endl;
This assumes that you need to use the RGB values together. If you don't, you can uses cv::split to get each channel separately. See etarion's answer for the link with example.
Also, in my cases, you simply need the image in gray-scale. Then, you can load the image in grayscale and access it as an array of uchar.
cv::Mat img = cv::imread("lenna.png",0);
for(int i=0; i<img.rows; i++)
for(int j=0; j<img.cols; j++)
std::cout << img.at<uchar>(i,j) << std::endl;
UPDATE: Using split to get the 3 channels
cv::Mat img = cv::imread("lenna.png");
std::vector<cv::Mat> three_channels = cv::split(img);
// Now I can access each channel separately
for(int i=0; i<img.rows; i++)
for(int j=0; j<img.cols; j++)
std::cout << three_channels[0].at<uchar>(i,j) << " " << three_channels[1].at<uchar>(i,j) << " " << three_channels[2].at<uchar>(i,j) << std::endl;
// Similarly for the other two channels
UPDATE: Thanks to entarion for spotting the error I introduced when copying and pasting from the cv::Vec3b example.
img.at<uchar>(i,j)[0]
- this isn't going to work :) the [0]
has to go –
Senarmontite + > H
. Do you know any reason for this? –
Mccune Since OpenCV 3.0, there are official and fastest way to run function all over the pixel in cv::Mat.
void cv::Mat::forEach (const Functor& operation)
If you use this function, operation is runs on multi core automatically.
Disclosure : I'm contributor of this feature.
If you use C++, use the C++ interface of opencv and then you can access the members via http://docs.opencv.org/2.4/doc/tutorials/core/how_to_scan_images/how_to_scan_images.html#the-efficient-way or using cv::Mat::at(), for example.
This is an old question but needs to get updated since opencv is being actively developed. Recently, OpenCV has introduced parallel_for_ which complies with c++11 lambda functions. Here is the example
parallel_for_(Range(0 , img.rows * img.cols), [&](const Range& range){
for(int r = range.start; r<range.end; r++ )
{
int i = r / img.cols;
int j = r % img.cols;
img.ptr<uchar>(i)[j] = doSomethingWithPixel(img.at<uchar>(i,j));
}
});
This is mention-worthy that this method uses the CPU cores in modern computer architectures.
Since OpenCV 3.3 (see changelog) it is also possible to use C++11 style for loops:
// Example 1
Mat_<Vec3b> img = imread("lena.jpg");
for( auto& pixel: img ) {
pixel[0] = gamma_lut[pixel[0]];
pixel[1] = gamma_lut[pixel[1]];
pixel[2] = gamma_lut[pixel[2]];
}
// Example 2
Mat_<float> img2 = imread("float_image.exr", cv::IMREAD_UNCHANGED);
for(auto& p : img2) p *= 2;
The docs show a well written comparison of different ways to iterate over a Mat image here.
The fastest way is to use C style pointers. Here is the code copied from the docs:
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{
// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));
int channels = I.channels();
int nRows = I.rows;
int nCols = I.cols * channels;
if (I.isContinuous())
{
nCols *= nRows;
nRows = 1;
}
int i,j;
uchar* p;
for( i = 0; i < nRows; ++i)
{
p = I.ptr<uchar>(i);
for ( j = 0; j < nCols; ++j)
{
p[j] = table[p[j]];
}
}
return I;
}
Accessing the elements with the at is quite slow.
Note that if your operation can be performed using a lookup table, the built in function LUT is by far the fastest (also described in the docs).
If you want to modify RGB pixels one by one, the example below will help!
void LoopPixels(cv::Mat &img) {
// Accept only char type matrices
CV_Assert(img.depth() == CV_8U);
// Get the channel count (3 = rgb, 4 = rgba, etc.)
const int channels = img.channels();
switch (channels) {
case 1:
{
// Single colour
cv::MatIterator_<uchar> it, end;
for (it = img.begin<uchar>(), end = img.end<uchar>(); it != end; ++it)
*it = 255;
break;
}
case 3:
{
// RGB Color
cv::MatIterator_<cv::Vec3b> it, end;
for (it = img.begin<cv::Vec3b>(), end = img.end<cv::Vec3b>(); it != end; ++it) {
uchar &r = (*it)[2];
uchar &g = (*it)[1];
uchar &b = (*it)[0];
// Modify r, g, b values
// E.g. r = 255; g = 0; b = 0;
}
break;
}
}
}
© 2022 - 2024 — McMap. All rights reserved.