If lv stores a long value, and the machine is 32 bits, the following code:
iv = int(lv & 0xffffffff)
results an iv of type long, instead of the machine's int.
How can I get the (signed) int value in this case?
If lv stores a long value, and the machine is 32 bits, the following code:
iv = int(lv & 0xffffffff)
results an iv of type long, instead of the machine's int.
How can I get the (signed) int value in this case?
import ctypes
number = lv & 0xFFFFFFFF
signed_number = ctypes.c_long(number).value
ctypes
to sign-extend the received value into a ctypes.c_short
. We already have C++ code to do this in our product, so 'porting' this to ctypes
was trivial. And once life-cycle testing is complete, nobody's gonna care about this script again. Why bash ctypes
? It's hella useful for all sorts of systems programming tasks! –
Unchristian ctypes.c_int32
instead of c_long
to ensure 32-bits on all platforms. –
Landowska Essentially, the problem is to sign extend from 32 bits to... an infinite number of bits, because Python has arbitrarily large integers. Normally, sign extension is done automatically by CPU instructions when casting, so it's interesting that this is harder in Python than it would be in, say, C.
By playing around, I found something similar to BreizhGatch's function, but that doesn't require a conditional statement. n & 0x80000000
extracts the 32-bit sign bit; then, the -
keeps the same 32-bit representation but sign-extends it; finally, the extended sign bits are set on n
.
def toSigned32(n):
n = n & 0xffffffff
return n | (-(n & 0x80000000))
Bit Twiddling Hacks suggests another solution that perhaps works more generally. n ^ 0x80000000
flips the 32-bit sign bit; then - 0x80000000
will sign-extend the opposite bit. Another way to think about it is that initially, negative numbers are above positive numbers (separated by 0x80000000
); the ^
swaps their positions; then the -
shifts negative numbers to below 0.
def toSigned32(n):
n = n & 0xffffffff
return (n ^ 0x80000000) - 0x80000000
You're working in a high-level scripting language; by nature, the native data types of the system you're running on aren't visible. You can't cast to a native signed int with code like this.
If you know that you want the value converted to a 32-bit signed integer--regardless of the platform--you can just do the conversion with the simple math:
iv = 0xDEADBEEF
if(iv & 0x80000000):
iv = -0x100000000 + iv
struct
way)... –
Pisces iv -= (iv & 0x80000000) << 1
–
Goddamned Can I suggest this:
def getSignedNumber(number, bitLength):
mask = (2 ** bitLength) - 1
if number & (1 << (bitLength - 1)):
return number | ~mask
else:
return number & mask
print iv, '->', getSignedNumber(iv, 32)
You may use struct library to convert values like that. It's ugly, but works:
from struct import pack, unpack
signed = unpack('l', pack('L', lv & 0xffffffff))[0]
'=l'
and '=L'
as the format strings. –
Pisces A quick and dirty solution (x is never greater than 32-bit in my case).
if x > 0x7fffffff:
x = x - 4294967296
If you know how many bits are in the original value, e.g. byte or multibyte values from an I2C sensor, then you can do the standard Two's Complement conversion:
def TwosComp8(n):
return n - 0x100 if n & 0x80 else n
def TwosComp16(n):
return n - 0x10000 if n & 0x8000 else n
def TwosComp32(n):
return n - 0x100000000 if n & 0x80000000 else n
In case the hexadecimal representation of the number is of 4 bytes, this would solve the problem.
def B2T_32(x):
num=int(x,16)
if(num & 0x80000000): # If it has the negative sign bit. (MSB=1)
num -= 0x80000000*2
return num
print(B2T_32(input("enter a input as a hex value\n")))
Simplest solution with any bit-length of number
Why is the syntax of a signed integer so difficult for the human mind to understand. Because this is the idea of machines. :-) Let's explain. If we have a bi-directional 7-bit counter with the initial state
000 0000
and we get a pulse for the back count input. Then the next number to count will be
111 1111
And the people said:
Hey, the counter we need to know that this is a negative reload. You should add a sign letting you know about this.
And the counter added:
1111 1111
And people asked,
How are we going to calculate that this is -1.
The counter replied: Find a number one greater than the reading and subtract it and you get the result.
1111 1111
-10000 0000
____________
(dec) -1
def sigIntFromHex(a): # a = 0x0xffe1
if a & (1 << (a.bit_length()-1)): # check if highest bit is 1 thru & with 0x1000
return a - (1 << (a.bit_length())) # 0xffe1 - 0x10000
else:
return a
###and more elegant:###
def sigIntFromHex(a):
return a - (1 << (a.bit_length())) if a & (1 << (a.bit_length()-1)) else a
b = 0xFFE1
print(sigIntFromHex(b))
I hope I helped
© 2022 - 2024 — McMap. All rights reserved.