Edit: falsetru's nested parser, which I've slightly modified to accept arbitrary regex patterns to specify delimiters and item separators, is faster and simpler than my original re.Scanner
solution:
import re
def parse_nested(text, left=r'[(]', right=r'[)]', sep=r','):
""" https://mcmap.net/q/412655/-how-to-parse-a-string-and-return-a-nested-array (falsetru) """
pat = r'({}|{}|{})'.format(left, right, sep)
tokens = re.split(pat, text)
stack = [[]]
for x in tokens:
if not x or re.match(sep, x):
continue
if re.match(left, x):
# Nest a new list inside the current list
current = []
stack[-1].append(current)
stack.append(current)
elif re.match(right, x):
stack.pop()
if not stack:
raise ValueError('error: opening bracket is missing')
else:
stack[-1].append(x)
if len(stack) > 1:
print(stack)
raise ValueError('error: closing bracket is missing')
return stack.pop()
text = "a {{c1::group {{c2::containing::HINT}} a few}} {{c3::words}} or three"
print(parse_nested(text, r'\s*{{', r'}}\s*'))
yields
['a', ['c1::group', ['c2::containing::HINT'], 'a few'], ['c3::words'], 'or three']
Nested structures can not be matched with Python regex alone, but it is remarkably easy to build a basic parser (which can handle nested structures) using re.Scanner:
import re
class Node(list):
def __init__(self, parent=None):
self.parent = parent
class NestedParser(object):
def __init__(self, left='\(', right='\)'):
self.scanner = re.Scanner([
(left, self.left),
(right, self.right),
(r"\s+", None),
(".+?(?=(%s|%s|$))" % (right, left), self.other),
])
self.result = Node()
self.current = self.result
def parse(self, content):
self.scanner.scan(content)
return self.result
def left(self, scanner, token):
new = Node(self.current)
self.current.append(new)
self.current = new
def right(self, scanner, token):
self.current = self.current.parent
def other(self, scanner, token):
self.current.append(token.strip())
It can be used like this:
p = NestedParser()
print(p.parse("((a+b)*(c-d))"))
# [[['a+b'], '*', ['c-d']]]
p = NestedParser()
print(p.parse("( (a ( ( c ) b ) ) ( d ) e )"))
# [[['a', [['c'], 'b']], ['d'], 'e']]
By default NestedParser
matches nested parentheses. You can pass other regex to match other nested patterns, such as brackets, []
. For example,
p = NestedParser('\[', '\]')
result = (p.parse("Lorem ipsum dolor sit amet [@a xxx yyy [@b xxx yyy [@c xxx yyy]]] lorem ipsum sit amet"))
# ['Lorem ipsum dolor sit amet', ['@a xxx yyy', ['@b xxx yyy', ['@c xxx yyy']]],
# 'lorem ipsum sit amet']
p = NestedParser('<foo>', '</foo>')
print(p.parse("<foo>BAR<foo>BAZ</foo></foo>"))
# [['BAR', ['BAZ']]]
Of course, pyparsing
can do a whole lot more than the above code can. But for this single purpose, the above NestedParser
is about 5x faster for small strings:
In [27]: import pyparsing as pp
In [28]: data = "( (a ( ( c ) b ) ) ( d ) e )"
In [32]: %timeit pp.nestedExpr().parseString(data).asList()
1000 loops, best of 3: 1.09 ms per loop
In [33]: %timeit NestedParser().parse(data)
1000 loops, best of 3: 234 us per loop
and around 28x faster for larger strings:
In [44]: %timeit pp.nestedExpr().parseString('({})'.format(data*10000)).asList()
1 loops, best of 3: 8.27 s per loop
In [45]: %timeit NestedParser().parse('({})'.format(data*10000))
1 loops, best of 3: 297 ms per loop