I've been experimenting with mremap(). I'd like to be able to move virtual memory pages around at high speeds. At least higher speeds than copying them. I have some ideas for algorithms which could make use of being able to move memory pages really fast. Problem is that the program below shows that mremap() is very slow -- at least on my i7 laptop -- compared to actually copying the same memory pages byte by byte.
How does the test source code work? mmap() 256 MB of RAM which is bigger than the on-CPU caches. Iterate for 200,000 times. On each iteration swap two random memory pages using a particular swap method. Run once and time using the mremap()-based page swap method. Run again and time using the byte-by-byte copy swap methed. Turns out that mremap() only manages 71,577 page swaps per second, whereas the byte-by-byte copy manages a whopping 287,879 page swaps per second. So mremap() is 4 times slower than a byte by byte copy!
Questions:
Why is mremap() so slow?
Is there another user-land or kernel-land callable page mapping manipulation API which might be faster?
Is there another user-land or kernel-land callable page mapping manipulation API allowing multiple, non-consecutive pages to be remapped in one call?
Are there any kernel extensions that support this sort of thing?
#include <stdio.h>
#include <string.h>
#define __USE_GNU
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <asm/ldt.h>
#include <asm/unistd.h>
// gcc mremap.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_MREMAP=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*200_000;'
// page size = 4096
// allocating 256 MB
// before 0x7f8e060bd000=0
// before 0x7f8e060be000=1
// before 0x7f8e160bd000
// after 0x7f8e060bd000=41
// after 0x7f8e060be000=228
// 71577 per second
// gcc mremap.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_COPY=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*200_000;'
// page size = 4096
// allocating 256 MB
// before 0x7f1a9efa5000=0
// before 0x7f1a9efa6000=1
// before 0x7f1aaefa5000
// sizeof(i)=8
// after 0x7f1a9efa5000=41
// after 0x7f1a9efa6000=228
// 287879 per second
// gcc mremap.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_MEMCPY=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*200_000;'
// page size = 4096
// allocating 256 MB
// before 0x7faf7c979000=0
// before 0x7faf7c97a000=1
// before 0x7faf8c979000
// sizeof(i)=8
// after 0x7faf7c979000=41
// after 0x7faf7c97a000=228
// 441911 per second
/*
* Algorithm:
* - Allocate 256 MB of memory
* - loop 200,000 times
* - swap a random 4k block for a random 4k block
* Run the test twice; once for swapping using page table, once for swapping using CPU copying!
*/
#define PAGES (1024*64)
int main() {
int PAGE_SIZE = getpagesize();
char* m = NULL;
unsigned char* p[PAGES];
void* t;
printf("page size = %d\n", PAGE_SIZE);
printf("allocating %u MB\n", PAGE_SIZE*PAGES / 1024 / 1024);
m = (char*)mmap(0, PAGE_SIZE*(1+PAGES), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
t = &m[PAGES*PAGE_SIZE];
{
unsigned long i;
for (i=0; i<PAGES; i++) {
p[i] = &m[i*PAGE_SIZE];
memset(p[i], i & 255, PAGE_SIZE);
}
}
printf("before %p=%u\n", p[0], p[0][0]);
printf("before %p=%u\n", p[1], p[1][0]);
printf("before %p\n", t);
if (getenv("TEST_MREMAP")) {
unsigned i;
for (i=0; i<200001; i++) {
unsigned p1 = random() % PAGES;
unsigned p2 = random() % PAGES;
// mremap(void *old_address, size_t old_size, size_t new_size,int flags, /* void *new_address */);
mremap(p[p2], PAGE_SIZE, PAGE_SIZE, MREMAP_FIXED | MREMAP_MAYMOVE, t );
mremap(p[p1], PAGE_SIZE, PAGE_SIZE, MREMAP_FIXED | MREMAP_MAYMOVE, p[p2]);
mremap(t , PAGE_SIZE, PAGE_SIZE, MREMAP_FIXED | MREMAP_MAYMOVE, p[p1]); // p3 no longer exists after this!
} /* for() */
}
else if (getenv("TEST_MEMCPY")) {
unsigned long * pu[PAGES];
unsigned long i;
for (i=0; i<PAGES; i++) {
pu[i] = (unsigned long *)p[i];
}
printf("sizeof(i)=%lu\n", sizeof(i));
for (i=0; i<200001; i++) {
unsigned p1 = random() % PAGES;
unsigned p2 = random() % PAGES;
unsigned long * pa = pu[p1];
unsigned long * pb = pu[p2];
unsigned char t[PAGE_SIZE];
//memcpy(void *dest, const void *src, size_t n);
memcpy(t , pb, PAGE_SIZE);
memcpy(pb, pa, PAGE_SIZE);
memcpy(pa, t , PAGE_SIZE);
} /* for() */
}
else if (getenv("TEST_MODIFY_LDT")) {
unsigned long * pu[PAGES];
unsigned long i;
for (i=0; i<PAGES; i++) {
pu[i] = (unsigned long *)p[i];
}
printf("sizeof(i)=%lu\n", sizeof(i));
// int modify_ldt(int func, void *ptr, unsigned long bytecount);
//
// modify_ldt(int func, void *ptr, unsigned long bytecount);
// modify_ldt() reads or writes the local descriptor table (ldt) for a process. The ldt is a per-process memory management table used by the i386 processor. For more information on this table, see an Intel 386 processor handbook.
//
// When func is 0, modify_ldt() reads the ldt into the memory pointed to by ptr. The number of bytes read is the smaller of bytecount and the actual size of the ldt.
//
// When func is 1, modify_ldt() modifies one ldt entry. ptr points to a user_desc structure and bytecount must equal the size of this structure.
//
// The user_desc structure is defined in <asm/ldt.h> as:
//
// struct user_desc {
// unsigned int entry_number;
// unsigned long base_addr;
// unsigned int limit;
// unsigned int seg_32bit:1;
// unsigned int contents:2;
// unsigned int read_exec_only:1;
// unsigned int limit_in_pages:1;
// unsigned int seg_not_present:1;
// unsigned int useable:1;
// };
//
// On success, modify_ldt() returns either the actual number of bytes read (for reading) or 0 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the error.
unsigned char ptr[20000];
int result;
result = modify_ldt(0, &ptr[0], sizeof(ptr)); printf("result=%d, errno=%u\n", result, errno);
result = syscall(__NR_modify_ldt, 0, &ptr[0], sizeof(ptr)); printf("result=%d, errno=%u\n", result, errno);
// todo: how to get these calls returning a non-zero value?
}
else {
unsigned long * pu[PAGES];
unsigned long i;
for (i=0; i<PAGES; i++) {
pu[i] = (unsigned long *)p[i];
}
printf("sizeof(i)=%lu\n", sizeof(i));
for (i=0; i<200001; i++) {
unsigned long j;
unsigned p1 = random() % PAGES;
unsigned p2 = random() % PAGES;
unsigned long * pa = pu[p1];
unsigned long * pb = pu[p2];
unsigned long t;
for (j=0; j<(4096/8/8); j++) {
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
t = *pa; *pa ++ = *pb; *pb ++ = t;
}
} /* for() */
}
printf("after %p=%u\n", p[0], p[0][0]);
printf("after %p=%u\n", p[1], p[1][0]);
return 0;
}
Update: So that we don't need to question how fast 'round-trip to kernelspace' is, here's a further performance test program that shows that we can call getpid() 3 times in a row, 81,916,192 times per second on the same i7 laptop:
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
// gcc getpid.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_COPY=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*100_000_000;'
// running_total=8545800085458
// 81916192 per second
/*
* Algorithm:
* - Call getpid() 100 million times.
*/
int main() {
unsigned i;
unsigned long running_total = 0;
for (i=0; i<100000001; i++) {
/* 123123123 */
running_total += getpid();
running_total += getpid();
running_total += getpid();
} /* for() */
printf("running_total=%lu\n", running_total);
}
Update 2: I added WIP code to call a function I discovered called modify_ldt(). The man page hints that page manipulation might be possible. However, no matter what I try then the function always returns zero when I'm expecting it to return the number of bytes read. 'man modify_ldt' says "On success, modify_ldt() returns either the actual number of bytes read (for reading) or 0 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the error." Any ideas (a) whether modify_ldt() will be an alternative to mremap() ? and (b) how to get modify_ldt() working?
man mremap
- mremap() expands (or shrinks) an existing memory mapping. Your use case is to relocate an existing mapping. You can do this, but it is not what it is intended for; basically as per R. – Soyuzrealloc()
is to append memory at the end of a current allocation. Your test code above is replacing allocations in the middle. You don't normally place all the allocations close together and then try to re-order them; they are guaranteed not to fit. Look closely att
; don't even bother allocating it, just use the address as a spare address space. Ie,m = mmap(0, PAGE_SIZE*(PAGES)...
and thememset()
is not needed? Does mremap initialize.... – Soyuzmremap()
. I don't think it is placing the memory at your requested address. It is doing more work than you think. – Soyuzgetpid
is not a good test case for system calls; some (if not most/all?) runtime libraries that implement the C API for it cache the result of the system call (it never changes after all) on first call, so all subsequent calls are just reading the cache, not making a system call. This is true on glibc 2.3.4 and higher for instance, and it seems an obvious optimization for other runtime libraries to use. – Matless