I posted this on matlab central but didn't get any responses so I figured I'd repost here.
I recently wrote a simple routine in Matlab that uses an FFT in a for-loop; the FFT dominates the calculations. I wrote the same routine in mex just for experimentation purposes and it calls the FFTW 3.3 library. It turns out that the matlab routine runs faster than the mex routine for very large arrays (about twice as fast). The mex routine uses wisdom and and performs the same FFT calculations. I also know matlab uses FFTW, but is it possible their version is slightly more optimized? I even used the FFTW_EXHAUSTIVE flag and its still about twice as slow for large arrays than the MATLAB counterpart. Furthermore I ensured the matlab I used was single threaded with the "-singleCompThread" flag and the mex file I used was not in debug mode. Just curious if this was the case - or if there are some optimizations matlab is using under the hood that I dont know about. Thanks.
Here's the mex portion:
void class_cg_toeplitz::analysis() {
// This method computes CG iterations using FFTs
// Check for wisdom
if(fftw_import_wisdom_from_filename("cd.wis") == 0) {
mexPrintf("wisdom not loaded.\n");
} else {
mexPrintf("wisdom loaded.\n");
}
// Set FFTW Plan - use interleaved FFTW
fftw_plan plan_forward_d_buffer;
fftw_plan plan_forward_A_vec;
fftw_plan plan_backward_Ad_buffer;
fftw_complex *A_vec_fft;
fftw_complex *d_buffer_fft;
A_vec_fft = fftw_alloc_complex(n);
d_buffer_fft = fftw_alloc_complex(n);
// CREATE MASTER PLAN - Do this on an empty vector as creating a plane
// with FFTW_MEASURE will erase the contents;
// Use d_buffer
// This is somewhat dangerous because Ad_buffer is a vector; but it does not
// get resized so &Ad_buffer[0] should work
plan_forward_d_buffer = fftw_plan_dft_r2c_1d(d_buffer.size(),&d_buffer[0],d_buffer_fft,FFTW_EXHAUSTIVE);
plan_forward_A_vec = fftw_plan_dft_r2c_1d(A_vec.height,A_vec.value,A_vec_fft,FFTW_WISDOM_ONLY);
// A_vec_fft.*d_buffer_fft will overwrite d_buffer_fft
plan_backward_Ad_buffer = fftw_plan_dft_c2r_1d(Ad_buffer.size(),d_buffer_fft,&Ad_buffer[0],FFTW_EXHAUSTIVE);
// Get A_vec_fft
fftw_execute(plan_forward_A_vec);
// Find initial direction - this is the initial residual
for (int i=0;i<n;i++) {
d_buffer[i] = b.value[i];
r_buffer[i] = b.value[i];
}
// Start CG iterations
norm_ro = norm(r_buffer);
double fft_reduction = (double)Ad_buffer.size(); // Must divide by size of vector because inverse FFT does not do this
while (norm(r_buffer)/norm_ro > relativeresidual_cutoff) {
// Find Ad - use fft
fftw_execute(plan_forward_d_buffer);
// Get A_vec_fft.*fft(d) - A_vec_fft is only real, but d_buffer_fft
// has complex elements; Overwrite d_buffer_fft
for (int i=0;i<n;i++) {
d_buffer_fft[i][0] = d_buffer_fft[i][0]*A_vec_fft[i][0]/fft_reduction;
d_buffer_fft[i][1] = d_buffer_fft[i][1]*A_vec_fft[i][0]/fft_reduction;
}
fftw_execute(plan_backward_Ad_buffer);
// Calculate r'*r
rtr_buffer = 0;
for (int i=0;i<n;i++) {
rtr_buffer = rtr_buffer + r_buffer[i]*r_buffer[i];
}
// Calculate alpha
alpha = 0;
for (int i=0;i<n;i++) {
alpha = alpha + d_buffer[i]*Ad_buffer[i];
}
alpha = rtr_buffer/alpha;
// Calculate new x
for (int i=0;i<n;i++) {
x[i] = x[i] + alpha*d_buffer[i];
}
// Calculate new residual
for (int i=0;i<n;i++) {
r_buffer[i] = r_buffer[i] - alpha*Ad_buffer[i];
}
// Calculate beta
beta = 0;
for (int i=0;i<n;i++) {
beta = beta + r_buffer[i]*r_buffer[i];
}
beta = beta/rtr_buffer;
// Calculate new direction vector
for (int i=0;i<n;i++) {
d_buffer[i] = r_buffer[i] + beta*d_buffer[i];
}
*total_counter = *total_counter+1;
if(*total_counter >= iteration_cutoff) {
// Set total_counter to -1, this indicates failure
*total_counter = -1;
break;
}
}
// Store Wisdom
fftw_export_wisdom_to_filename("cd.wis");
// Free fft alloc'd memory and plans
fftw_destroy_plan(plan_forward_d_buffer);
fftw_destroy_plan(plan_forward_A_vec);
fftw_destroy_plan(plan_backward_Ad_buffer);
fftw_free(A_vec_fft);
fftw_free(d_buffer_fft);
};
Here's the matlab portion:
% Take FFT of A_vec.
A_vec_fft = fft(A_vec); % Take fft once
% Find initial direction - this is the initial residual
x = zeros(n,1); % search direction
r = zeros(n,1); % residual
d = zeros(n+(n-2),1); % search direction; pad to allow FFT
for i = 1:n
d(i) = b(i);
r(i) = b(i);
end
% Enter CG iterations
total_counter = 0;
rtr_buffer = 0;
alpha = 0;
beta = 0;
Ad_buffer = zeros(n+(n-2),1); % This holds the product of A*d - calculate this once per iteration and using FFT; only 1:n is used
norm_ro = norm(r);
while(norm(r)/norm_ro > 10^-6)
% Find Ad - use fft
Ad_buffer = ifft(A_vec_fft.*fft(d));
% Calculate rtr_buffer
rtr_buffer = r'*r;
% Calculate alpha
alpha = rtr_buffer/(d(1:n)'*Ad_buffer(1:n));
% Calculate new x
x = x + alpha*d(1:n);
% Calculate new residual
r = r - alpha*Ad_buffer(1:n);
% Calculate beta
beta = r'*r/(rtr_buffer);
% Calculate new direction vector
d(1:n) = r + beta*d(1:n);
% Update counter
total_counter = total_counter+1;
end
In terms of time, for N = 50000 and b = 1:n it takes about 10.5 seconds with mex and 4.4 seconds with matlab. I'm using R2011b. Thanks
fftw
command which allows to control the optimization parameters used internally for the fftw lib(->help fftw). with this command you can also get the wisdom database matlab has been using for its computations. it would be interesting what results you get when you feed matlabs wisdom database to your c++ program and vice versa... – Cenogenesisrelativeresidual_cutoff
in the mex, whose definition isn't shown. – Rockbottomfftw_execute()
in the .mex code; but only 1 in the matlab. I assume there's something obvious I'm missing, but I thought I'd comment. – Transmundanefft
just got more performance improvements in latest MATLAB version R2013a (on CPUs that support AVX instruction set): mathworks.com/help/matlab/release-notes.html#btsiwqu-1 – Walkling