I wonder why operating on Float64
values is faster than operating on Float16
:
julia> rnd64 = rand(Float64, 1000);
julia> rnd16 = rand(Float16, 1000);
julia> @benchmark rnd64.^2
BenchmarkTools.Trial: 10000 samples with 10 evaluations.
Range (min … max): 1.800 μs … 662.140 μs ┊ GC (min … max): 0.00% … 99.37%
Time (median): 2.180 μs ┊ GC (median): 0.00%
Time (mean ± σ): 3.457 μs ± 13.176 μs ┊ GC (mean ± σ): 12.34% ± 3.89%
▁██▄▂▂▆▆▄▂▁ ▂▆▄▁ ▂▂▂▁ ▂
████████████████▇▇▆▆▇▆▅▇██▆▆▅▅▆▄▄▁▁▃▃▁▁▄▁▃▄▁▃▁▄▃▁▁▆▇██████▇ █
1.8 μs Histogram: log(frequency) by time 10.6 μs <
Memory estimate: 8.02 KiB, allocs estimate: 5.
julia> @benchmark rnd16.^2
BenchmarkTools.Trial: 10000 samples with 6 evaluations.
Range (min … max): 5.117 μs … 587.133 μs ┊ GC (min … max): 0.00% … 98.61%
Time (median): 5.383 μs ┊ GC (median): 0.00%
Time (mean ± σ): 5.716 μs ± 9.987 μs ┊ GC (mean ± σ): 3.01% ± 1.71%
▃▅█▇▅▄▄▆▇▅▄▁ ▁ ▂
▄██████████████▇▆▇▆▆▇▆▇▅█▇████▇█▇▇▆▅▆▄▇▇▆█▇██▇█▇▇▇▆▇▇▆▆▆▆▄▄ █
5.12 μs Histogram: log(frequency) by time 7.48 μs <
Memory estimate: 2.14 KiB, allocs estimate: 5.
Maybe you ask why I expect the opposite: Because Float16
values have less floating point precision:
julia> rnd16[1]
Float16(0.627)
julia> rnd64[1]
0.4375452455597999
Shouldn't calculations with fewer precisions take place faster? Then I wonder why someone should use Float16
? They can do it even with Float128
!
@btime $(similar(rnd16)) .= 2 .* $rnd16;
is faster than 64. This is quite recent, see e.g. github.com/JuliaLang/julia/issues/40216 – Grearson