We know that codepoints can be in this interval 0..10FFFF which is less than 2^21. Then why do we need UTF-32 when all codepoints can be represented by 3 bytes? UTF-24 should be enough.
Computers are generally much better at dealing with data on 4 byte boundaries. The benefits in terms of reduced memory consumption are relatively small compared with the pain of working on 3-byte boundaries.
(I speculate there was also a reluctance to have a limit that was "only what we can currently imagine being useful" when coming up with the original design. After all, that's caused a lot of problems in the past, e.g. with IPv4. While I can't see us ever needing more than 24 bits, if 32 bits is more convenient anyway then it seems reasonable to avoid having a limit which might just be hit one day, via reserved ranges etc.)
I guess this is a bit like asking why we often have 8-bit, 16-bit, 32-bit and 64-bit integer datatypes (byte, int, long, whatever) but not 24-bit ones. I'm sure there are lots of occasions where we know that a number will never go beyond 221, but it's just simpler to use int
than to create a 24-bit type.
First there were 2 character coding schemes: UCS-4 that coded each character into 32 bits, as an unsigned integer in range 0x00000000 - 0x7FFFFFFF, and UCS-2 that used 16 bits for each codepoint.
Later it was found out that using just the 65536 codepoints of UCS-2 would get one into problems anyway, but many programs (Windows, cough) relied on wide characters being 16 bits wide, so UTF-16 was created. UTF-16 encodes the codepints in the range U+0000
- U+FFFF
just like UCS-2; and U+10000
- U+10FFFF
using surrogate pairs, i.e. a pair of two 16-bit values.
As this was a bit complicated, UTF-32 was introduced, as a simple one-to-one mapping for characters beyond U+FFFF
. Now, since UTF-16 can only encode up to U+10FFFF
, it was decided that this is will be the maximum value that will be ever assigned, so that there will be no further compatibility problems, so UTF-32 indeed just uses 21 bits. As an added bonus, UTF-8, which was initially planned to be a 1-6-byte encoding, now never needs more than 4 bytes for each code point. Therefore it can be easily proven that it never requires more storage than UTF-32.
It is true that a hypothetical UTF-24 format would save memory. However its savings would be dubious anyway, as it would mostly consume more storage than UTF-8, except for just blasts of emoji or such - and not many interesting texts of significant length consist solely of emojis.
But, UTF-32 is used as in memory representation for text in programs that need to have simply-indexed access to codepoints - it is the only encoding where the Nth element in a C array is also the Nth codepoint - UTF-24 would do the same for 25 % memory savings but more complicated element accesses.
It's true that only 21 bits are required (reference), but modern computers are good at moving 32-bit units of things around and generally interacting with them. I don't think I've ever used a programming language that had a 24-bit integer or character type, nor a platform where that was a multiple of the processor's word size (not since I last used an 8-bit computer; UTF-24 would be reasonable on an 8-bit machine), though naturally there have been some.
UTF-32 is a multiple of 16bit. Working with 32 bit quantities is much more common than working with 24 bit quantities and is usually better supported. It also helps keep each character 4-byte aligned (assuming the entire string is 4-byte aligned). Going from 1 byte to 2 bytes to 4 bytes is the most "logical" procession.
Apart from that: The Unicode standard is ever-growing. Codepoints outside of that range could eventually be assigned (it is somewhat unlikely in the near future, however, due to the huge number of unassigned codepoints still available).
© 2022 - 2024 — McMap. All rights reserved.