I'm working on a Haskell project that involves tying a big knot: I'm parsing a serialized representation of a graph, where each node is at some offset into the file, and may reference another node by its offset. So I need to build up a map from offsets to nodes while parsing, which I can feed back to myself in a do rec
block.
I have this working, and kinda-sorta-reasonably abstracted into a StateT
-esque monad transformer:
{-# LANGUAGE DoRec, GeneralizedNewtypeDeriving #-}
import qualified Control.Monad.State as S
data Knot s = Knot { past :: s, future :: s }
newtype RecStateT s m a = RecStateT (S.StateT (Knot s) m a) deriving
( Alternative
, Applicative
, Functor
, Monad
, MonadCont
, MonadError e
, MonadFix
, MonadIO
, MonadPlus
, MonadReader r
, MonadTrans
, MonadWriter w )
runRecStateT :: RecStateT s m a -> Knot s -> m (a, Knot s)
runRecStateT (RecStateT st) = S.runStateT st
tie :: MonadFix m => RecStateT s m a -> s -> m (a, s)
tie m s = do
rec (a, Knot s' _) <- runRecStateT m (Knot s s')
return (a, s')
get :: Monad m => RecStateT s m (Knot s)
get = RecStateT S.get
put :: Monad m => s -> RecStateT s m ()
put s = RecStateT $ S.modify $ \ ~(Knot _ s') -> Knot s s'
The tie
function is where the magic happens: the call to runRecStateT
produces a value and a state, which I feed it as its own future. Note that get
allows you to read from both the past and future states, but put
only allows you to modify the "present."
Question 1: Does this seem like a decent way to implement this knot-tying pattern in general? Or better still, has somebody implemented a general solution to this, that I overlooked when snooping through Hackage? I beat my head against the Cont
monad for a while, since it seemed possibly more elegant (see similar post from Dan Burton), but I just couldn't work it out.
Totally subjective Question 2: I'm not totally thrilled with the way my calling code ends up looking:
do
Knot past future <- get
let {- ... -} = past
{- ... -} = future
node = {- ... -}
put $ {- ... -}
return node
Implementation details here omitted, obviously, the important point being that I have to get the past
and future
state, pattern-match them inside a let binding (or explicitly make the previous pattern lazy) to extract whatever I care about, then build my node, update my state and finally return the node. Seems unnecessarily verbose, and I particularly dislike how easy it is to accidentally make the pattern that extracts the past
and future
states strict. So, can anybody think of a nicer interface?