If the regular expressions use "advanced features" of typical procedural matchers (like those in Perl, Java, Python, Ruby, etc.) that allow accepting languages that aren't regular, then you are out of luck. The problem is in general undecidable. E.g. the problem of whether one pushdown automaton recognizes the same context free (CF) language as another is undecidable. Extended regular expressions can describe CF languages.
On the other hand, if the regular expressions are "true" in the theoretical sense, consisting only of concatenation, alternation, and Kleene star over strings with a finite alphabet, plus the usual syntactic sugar on these (character classes, +, ?, etc), then there is a simple polynomial time algorithm.
I can't give you libraries, but this:
For each pair of regexes r and s for languages L(r) and L(s)
Find the corresponding Deterministic Finite Automata M(r) and M(s)
Compute the cross-product machine M(r x s) and assign accepting states
so that it computes L(r) - L(s)
Use a DFS or BFS of the the M(r x s) transition table to see if any
accepting state can be reached from the start state
If no, you can eliminate s because L(s) is a subset of L(r).
Reassign accepting states so that M(r x s) computes L(s) - L(r)
Repeat the steps above to see if it's possible to eliminate r
Converting a regex to a DFA generally uses Thompson's construction to get a non-deterministic automaton. This is converted to a DFA using the Subset Construction. The cross-product machine is another standard algorithm.
This was all worked out in the 1960's and is now part of any good undergrad computer science theory course. The gold standard for the topic is Hopcroft and Ullman, Automata Theory.
a.c*
andabc*
? And you wan't to decipher if they are the same, or partially the same? Or isa.c* ⊃ abc*
a whole regex? As I've never seen that notation before – Sasakiabc*
is also accepted bya.c*
– Currency