How to build a C program using a custom version of glibc and static linking?
Asked Answered
T

3

27

I have built glibc 2.14 and installed it in directory ~/GLIBC/glibc_install. Now I want to build and run programs using this C library instead of my system's default C library.

  • To be sure that I was using my custom glibc, I added a call to puts into glibc/stdio-common/printf.c:__printf to print a message.

  • Then I rebuilt and reinstalled glibc.

  • Then I wrote a "Hello, World" program and tried to compile and link it as follows:

    gcc -nodefaultlibs -static -lgcc -L~/GLIBC/glibc_install/lib -o myprog myprog.c
    

But I get the following linker error report:

/usr/lib/gcc/x86_64-linux-gnu/4.4.3/../../../../lib/crt1.o: In function `_start':
(.text+0x19): undefined reference to `__libc_csu_init'
/usr/lib/gcc/x86_64-linux-gnu/4.4.3/../../../../lib/crt1.o: In function `_start':
(.text+0x25): undefined reference to `__libc_start_main'
/tmp/ccACTQEp.o: In function `main':
c1.c:(.text+0xa): undefined reference to `puts'
collect2: ld returned 1 exit status

What am I doing wrong?

Tetraspore answered 26/5, 2012 at 3:37 Comment(4)
GCC heavily relies on which internal functions Glibc has. You'll have to rebuild an earlier version of GCC in order not to expect these internal functions. This isn't going to be a piece of cake...Rogozen
I don't understand why I would need an earlier version of GCC. The glibc I built is the second-to-most recent release, 2.14. (I had build problems with 2.15 on my Ubuntu system because of known issues that I could not resolve with the recommended workarounds.)Tetraspore
GCC version should be unrelated. The symbols GCC is failing to find are supposed to be defined in libc.a, so if they're missing, maybe libc.a was miscompiled..?Amadavat
GCC versions have nothing to do with this issue. Please see my solution posted below (second answer).Tetraspore
T
27

Following a couple of suggestions from the glibc help mailing list ([email protected]), I have a solution. It turns out that this task is a bit tricky because you have to tell the linker to omit everything it would normally include automatically (and silently), and then include back everything that it needs, including a bunch of start and end files. Some of the start and end files come from libc and some come from gcc, so the make rule is a bit complicated. Below is a general sample makefile to illustrate the approach. I will assume that you are building a program called prog from a source file called prog.c and that you have installed your custom glibc in directory /home/my_acct/glibc_install.

TARGET = prog
OBJ = $(TARGET).o
SRC = $(TARGET).c
CC = gcc
CFLAGS = -g
LDFLAGS = -nostdlib -nostartfiles -static
GLIBCDIR = /home/my_acct/glibc_install/lib
STARTFILES = $(GLIBCDIR)/crt1.o $(GLIBCDIR)/crti.o `gcc --print-file-name=crtbegin.o`
ENDFILES = `gcc --print-file-name=crtend.o` $(GLIBCDIR)/crtn.o
LIBGROUP = -Wl,--start-group $(GLIBCDIR)/libc.a -lgcc -lgcc_eh -Wl,--end-group

$(TARGET): $(OBJ)
        $(CC) $(LDFLAGS) -o $@ $(STARTFILES) $^ $(LIBGROUP) $(ENDFILES) 

$(OBJ): $(SRC)
        $(CC) $(CFLAGS) -c $^

clean:
        rm -f *.o *.~ $(TARGET)
Tetraspore answered 27/5, 2012 at 6:15 Comment(2)
for the next time a good way of looking for such things is to run nm over your /lib /usr/lib directories to find symbols you are missing. essentially libcrt only contains the call to main.Deena
Can you link to the GCC mailing list thread? I would also add -nostdinc -I to control the headers as well.Orlina
O
10

Setup 1: compile your own glibc without dedicated GCC and use it

Without static also working at: Multiple glibc libraries on a single host

This setup might work and is quick as it does not recompile the whole GCC toolchain, just glibc.

But it is not reliable as it uses host C runtime objects such as crt1.o, crti.o, and crtn.o provided by glibc. This is mentioned at: https://sourceware.org/glibc/wiki/Testing/Builds?action=recall&rev=21#Compile_against_glibc_in_an_installed_location Those objects do early setup that glibc relies on, so I wouldn't be surprised if things crashed in wonderful and awesomely subtle ways.

For a more reliable setup, see Setup 2 below.

Build glibc and install locally:

export glibc_install="$(pwd)/glibc/build/install"

git clone git://sourceware.org/git/glibc.git
cd glibc
git checkout glibc-2.28
mkdir build
cd build
../configure --prefix "$glibc_install"
make -j `nproc`
make install -j `nproc`

Setup 1: verify the build

test_glibc.c

#define _GNU_SOURCE
#include <assert.h>
#include <gnu/libc-version.h>
#include <stdatomic.h>
#include <stdio.h>
#include <threads.h>

atomic_int acnt;
int cnt;

int f(void* thr_data) {
    for(int n = 0; n < 1000; ++n) {
        ++cnt;
        ++acnt;
    }
    return 0;
}

int main(int argc, char **argv) {
    /* Basic library version check. */
    printf("gnu_get_libc_version() = %s\n", gnu_get_libc_version());

    /* Exercise thrd_create from -pthread,
     * which is not present in glibc 2.27 in Ubuntu 18.04.
     * https://mcmap.net/q/14945/-how-do-i-start-threads-in-plain-c/52453291#52453291 */
    thrd_t thr[10];
    for(int n = 0; n < 10; ++n)
        thrd_create(&thr[n], f, NULL);
    for(int n = 0; n < 10; ++n)
        thrd_join(thr[n], NULL);
    printf("The atomic counter is %u\n", acnt);
    printf("The non-atomic counter is %u\n", cnt);
}

Compile and run with test_glibc.sh:

#!/usr/bin/env bash
set -eux
rm -rf tmp
mkdir tmp
gcc \
  -L "${glibc_install}/lib" \
  -I "${glibc_install}/include" \
  -Wl,--rpath="${glibc_install}/lib" \
  -Wl,--dynamic-linker="${glibc_install}/lib/ld-linux-x86-64.so.2" \
  -static \
  -std=c11 \
  -o tmp/test_glibc.out \
  -v \
  test_glibc.c \
  -pthread \
;
sudo chroot tmp /test_glibc.out

The program outputs the expected:

gnu_get_libc_version() = 2.28
The atomic counter is 10000
The non-atomic counter is 8674

even though we ran it on a clean chroot, so the -static must have worked.

Command adapted from https://sourceware.org/glibc/wiki/Testing/Builds?action=recall&rev=21#Compile_against_glibc_in_an_installed_location but --sysroot made it fail with:

cannot find /home/ciro/glibc/build/install/lib/libc.so.6 inside /home/ciro/glibc/build/install

so I removed it.

ldd output confirms that the ldd and libraries that we've just built are actually being used as expected:

+ ldd test_glibc.out
        linux-vdso.so.1 (0x00007ffe4bfd3000)
        libpthread.so.0 => /home/ciro/glibc/build/install/lib/libpthread.so.0 (0x00007fc12ed92000)
        libc.so.6 => /home/ciro/glibc/build/install/lib/libc.so.6 (0x00007fc12e9dc000)
        /home/ciro/glibc/build/install/lib/ld-linux-x86-64.so.2 => /lib64/ld-linux-x86-64.so.2 (0x00007fc12f1b3000)

The gcc compilation debug output shows that my host runtime objects were used, which is bad as mentioned previously, but I don't know how to work around it, e.g. it contains:

COLLECT_GCC_OPTIONS=/usr/lib/gcc/x86_64-linux-gnu/7/../../../x86_64-linux-gnu/crt1.o

Setup 1: modify glibc

Now let's modify glibc with:

diff --git a/nptl/thrd_create.c b/nptl/thrd_create.c
index 113ba0d93e..b00f088abb 100644
--- a/nptl/thrd_create.c
+++ b/nptl/thrd_create.c
@@ -16,11 +16,14 @@
    License along with the GNU C Library; if not, see
    <http://www.gnu.org/licenses/>.  */

+#include <stdio.h>
+
 #include "thrd_priv.h"

 int
 thrd_create (thrd_t *thr, thrd_start_t func, void *arg)
 {
+  puts("hacked");
   _Static_assert (sizeof (thr) == sizeof (pthread_t),
                   "sizeof (thr) != sizeof (pthread_t)");

Then recompile and re-install glibc, and recompile and re-run our program:

cd glibc/build
make -j `nproc`
make -j `nproc` install
./test_glibc.sh

and we see hacked printed a few times as expected.

This further confirms that we actually used the glibc that we compiled and not the host one.

Tested on Ubuntu 18.04.

Setup 2: crosstool-NG pristine setup

This is an alternative to setup 1, and it is the most correct setup I've achieved far: everything is correct as far as I can observe, including the C runtime objects such as crt1.o, crti.o, and crtn.o.

In this setup, we will compile a full dedicated GCC toolchain that uses the glibc that we want.

The only downside to this method is that the build will take longer. But I wouldn't risk a production setup with anything less.

crosstool-NG is a set of scripts that downloads and compiles everything from source for us, including GCC, glibc and binutils.

Yes the GCC build system is so bad that we need a separate project for that.

This setup is only not perfect because crosstool-NG does not support building the executables without extra -Wl flags, which feels weird since we've built GCC itself. But everything seems to work, so this is only an inconvenience.

Get crosstool-NG and configure it:

git clone https://github.com/crosstool-ng/crosstool-ng
cd crosstool-ng
git checkout a6580b8e8b55345a5a342b5bd96e42c83e640ac5
export CT_PREFIX="$(pwd)/.build/install"
export PATH="/usr/lib/ccache:${PATH}"
./bootstrap
./configure --enable-local
make -j `nproc`
./ct-ng x86_64-unknown-linux-gnu
./ct-ng menuconfig

The only mandatory option that I can see, is making it match your host kernel version to use the correct kernel headers. Find your host kernel version with:

uname -a

which shows me:

4.15.0-34-generic

so in menuconfig I do:

  • Operating System
    • Version of linux

so I select:

4.14.71

which is the first equal or older version. It has to be older since the kernel is backwards compatible.

Now you can build with:

env -u LD_LIBRARY_PATH time ./ct-ng build CT_JOBS=`nproc`

and now wait for about thirty minutes to two hours for compilation.

Setup 2: optional configurations

The .config that we generated with ./ct-ng x86_64-unknown-linux-gnu has:

CT_GLIBC_V_2_27=y

To change that, in menuconfig do:

  • C-library
  • Version of glibc

save the .config, and continue with the build.

Or, if you want to use your own glibc source, e.g. to use glibc from the latest git, proceed like this:

  • Paths and misc options
    • Try features marked as EXPERIMENTAL: set to true
  • C-library
    • Source of glibc
      • Custom location: say yes
      • Custom location
        • Custom source location: point to a directory containing your glibc source

where glibc was cloned as:

git clone git://sourceware.org/git/glibc.git
cd glibc
git checkout glibc-2.28

Setup 2: test it out

Once you have built he toolchain that you want, test it out with:

#!/usr/bin/env bash
set -eux
install_dir="${CT_PREFIX}/x86_64-unknown-linux-gnu"
rm -rf tmp
mkdir tmp
PATH="${PATH}:${install_dir}/bin" \
  x86_64-unknown-linux-gnu-gcc \
  -Wl,--dynamic-linker="${install_dir}/x86_64-unknown-linux-gnu/sysroot/lib/ld-linux-x86-64.so.2" \
  -Wl,--rpath="${install_dir}/x86_64-unknown-linux-gnu/sysroot/lib" \
  -static \
  -v \
  -o tmp/test_glibc.out \
  test_glibc.c \
  -pthread \
;
sudo chroot tmp /test_glibc.out

Everything seems to work as in Setup 1, except that now the correct runtime objects were used:

COLLECT_GCC_OPTIONS=/home/ciro/crosstool-ng/.build/install/x86_64-unknown-linux-gnu/bin/../x86_64-unknown-linux-gnu/sysroot/usr/lib/../lib64/crt1.o

Setup 2: failed efficient glibc recompilation attempt

It does not seem possible with crosstool-NG, as explained below.

If you just re-build;

env -u LD_LIBRARY_PATH time ./ct-ng build CT_JOBS=`nproc`

then your changes to the custom glibc source location are taken into account, but it builds everything from scratch, making it unusable for iterative development.

If we do:

./ct-ng list-steps

it gives a nice overview of the build steps:

Available build steps, in order:
  - companion_tools_for_build
  - companion_libs_for_build
  - binutils_for_build
  - companion_tools_for_host
  - companion_libs_for_host
  - binutils_for_host
  - cc_core_pass_1
  - kernel_headers
  - libc_start_files
  - cc_core_pass_2
  - libc
  - cc_for_build
  - cc_for_host
  - libc_post_cc
  - companion_libs_for_target
  - binutils_for_target
  - debug
  - test_suite
  - finish
Use "<step>" as action to execute only that step.
Use "+<step>" as action to execute up to that step.
Use "<step>+" as action to execute from that step onward.

therefore, we see that there are glibc steps intertwined with several GCC steps, most notably libc_start_files comes before cc_core_pass_2, which is likely the most expensive step together with cc_core_pass_1.

In order to build just one step, you must first set the "Save intermediate steps" in .config option for the intial build:

  • Paths and misc options
    • Debug crosstool-NG
      • Save intermediate steps

and then you can try:

env -u LD_LIBRARY_PATH time ./ct-ng libc+ -j`nproc`

but unfortunately, the + required as mentioned at: https://github.com/crosstool-ng/crosstool-ng/issues/1033#issuecomment-424877536

Note however that restarting at an intermediate step resets the installation directory to the state it had during that step. I.e., you will have a rebuilt libc - but no final compiler built with this libc (and hence, no compiler libraries like libstdc++ either).

and basically still makes the rebuild too slow to be feasible for development, and I don't see how to overcome this without patching crosstool-NG.

Furthermore, starting from the libc step didn't seem to copy over the source again from Custom source location, further making this method unusable.

Bonus: stdlibc++

A bonus if you're also interested in the C++ standard library: How to edit and re-build the GCC libstdc++ C++ standard library source?

Orlina answered 22/9, 2018 at 7:56 Comment(0)
A
6

You command line is just bogus. Try:

gcc -nodefaultlibs -static -L~/GLIBC/glibc_install/lib -o myprog myprog.c -lgcc -lc -lgcc -lc

or similar. You omitted -lc, and also erroneously had your libraries before your input files.

And you were searching for a library called libibgcc rather than libgcc...

Amadavat answered 26/5, 2012 at 4:10 Comment(10)
Re -lgcc: see edit--that was a typo; my command line had "-lgcc." I tried exactly the command line you suggested above and got exactly the same error results as reported in my original post, so that does not work, I'm afraid.Tetraspore
BTW, I did not have my libraries before my input files. I had a specification of the library search path, which AFAIK can come anywhere in the command line (since it is a flag, not an input). Anyway, see the solution below.Tetraspore
Why is -lgcc -lc being passed twice?Orlina
The first -lgcc will only resolve symbols that were undefined in myprog.c. If libc also needs libgcc, you need a second -lgcc after -lc.Amadavat
This fails for me on Ubuntu 14.04 GCC 4.8 with undefined reference to __gcc_personality_v0 and _Unwind_Resume, both of which are defined on libgcc_s.so but not in libgcc.a (there is no libgcc.so). If I remove -static it works for some reason even without adding -lgcc_s.Orlina
Wouldn't it also be necessary to set the include paths with -nostdinc -I?Orlina
Using -lgcc_eh as suggested by Amittai fixed the link problems, as libgcc_eh.a contains those symbols. It gets passed to the linker by gcc when using -static.Orlina
@CiroSantilli新疆改造中心六四事件法轮功, Could you please write out the whole command? I add -lgcc_en, but I still get the error.Allowance
@Allowance sorry, it's been a while, I don't remember it anymore :-( Let us know if you find the answer.Orlina
@Allowance OK, you've inspired me and I did it: #10763894Orlina

© 2022 - 2024 — McMap. All rights reserved.