Historically, saying that action invoked Undefined Behavior meant that any program which made use of such actions could be expected to correctly only on those implementations which defined, for that action, behavior meeting their requirements. Specifying that an action invoked Undefined Behavior didn't mean that programs using such action should be considered "illegitimate", but was rather intended to allow C to be used to run programs that didn't require such actions, on platforms which could not efficiently support them.
Generally, the expectation was that a compiler would either output the sequence of instructions which would most efficiently perform the indicated action in the cases required by the standard, and do whatever that sequence of instructions happened to do in other cases, or would output a sequence of instructions whose behavior in such cases was deemed to be in some fashion more "useful" than the natural sequence. In cases where an action might trigger a hardware trap, or where triggering an OS trap might plausibly in some cases be considered preferable to executing the "natural" sequence of instructions, and where a trap might cause behaviors outside the control of the C compiler, the Standard imposes no requirements. Such cases are thus labeled as "Undefined Behavior".
As others have noted, there are some platforms where p1 < p2
, for unrelated pointers p1 and p2, could be guaranteed to yield 0 or 1, but where the most efficient means of comparing p1 and p2 that would work in the cases defined by the Standard might not uphold the usual expectation that p1 < p2 || p2 > p2 || p1 != p2
. If a program written for such a platform knows that it will never deliberately compare unrelated pointers (implying that any such comparison would represent a program bug) it may be helpful to have stress-testing or troubleshooting builds generate code which traps on any such comparisons. The only way for the Standard to allow such implementations is to make such comparisons Undefined Behavior.
Until recently, the fact that a particular action would invoke behavior that was not defined by the Standard would generally only pose difficulties for people trying to write code on platforms where the action would have undesirable consequences. Further, on platforms where an action could only have undesirable consequences if a compiler went out of its way to make it do so, it was generally accepted practice for programmers to rely upon such an action behaving sensibly.
If one accepts the notions that:
The authors of the Standard expected that comparisons between unrelated pointers would work usefully on those platforms, and only those platforms, where the most natural means of comparing related pointers would also work with unrelated ones, and
There exist platforms where comparing unrelated pointers would be problematic
Then it makes complete sense for the Standard to regard unrelated-pointer comparisons as Undefined Behavior. Had they anticipated that even compilers for platforms which define a disjoint global ranking for all pointers might make unrelated-pointer comparisons negate the laws of time and causality (e.g. given:
int needle_in_haystack(char const *hs_base, int hs_size, char *needle)
{ return needle >= hs_base && needle < hs_base+hs_size; }
a compiler may infer that the program will never receive any input which would cause needle_in_haystack
to be given unrelated pointers, and any code which would only be relevant when the program receives such input may be eliminated) I think they would have specified things differently. Compiler writers would probably argue that the proper way to write needle_in_haystack
would be:
int needle_in_haystack(char const *hs_base, int hs_size, char *needle)
{
for (int i=0; i<size; i++)
if (hs_base+i == needle) return 1;
return 0;
}
since their compilers would recognize what the loop is doing and also recognize that it's running on a platform where unrelated pointer comparisons work, and thus generate the same machine code as older compilers would have generated for the earlier-stated formulation. As to whether it would be better to require compilers provide a means of specifying that code resembling the former version should either sensibly on platforms that will support it or refuse compilation on those that won't, or better to require that programmers intending the former semantics should write the latter and hope that optimizers turn it into something useful, I leave that to the reader's judgment.
intptr_t
and compare, the result does not necessarily carry information about the relative locations of unrelated objects in memory. Putting it in those terms makes the restriction more sensible to me. – Daleth