The documentation of std::hypot
says that:
Computes the square root of the sum of the squares of x and y, without undue overflow or underflow at intermediate stages of the computation.
I struggle to conceive a test case where std::hypot
should be used over the trivial sqrt(x*x + y*y)
.
The following test shows that std::hypot
is roughly 20x slower than the naive calculation.
#include <iostream>
#include <chrono>
#include <random>
#include <algorithm>
int main(int, char**) {
std::mt19937_64 mt;
const auto samples = 10000000;
std::vector<double> values(2 * samples);
std::uniform_real_distribution<double> urd(-100.0, 100.0);
std::generate_n(values.begin(), 2 * samples, [&]() {return urd(mt); });
std::cout.precision(15);
{
double sum = 0;
auto s = std::chrono::steady_clock::now();
for (auto i = 0; i < 2 * samples; i += 2) {
sum += std::hypot(values[i], values[i + 1]);
}
auto e = std::chrono::steady_clock::now();
std::cout << std::fixed <<std::chrono::duration_cast<std::chrono::microseconds>(e - s).count() << "us --- s:" << sum << std::endl;
}
{
double sum = 0;
auto s = std::chrono::steady_clock::now();
for (auto i = 0; i < 2 * samples; i += 2) {
sum += std::sqrt(values[i]* values[i] + values[i + 1]* values[i + 1]);
}
auto e = std::chrono::steady_clock::now();
std::cout << std::fixed << std::chrono::duration_cast<std::chrono::microseconds>(e - s).count() << "us --- s:" << sum << std::endl;
}
}
So I'm asking for guidance, when must I use std::hypot(x,y)
to obtain correct results over the much faster std::sqrt(x*x + y*y)
.
Clarification: I'm looking for answers that apply when x
and y
are floating point numbers. I.e. compare:
double h = std::hypot(static_cast<double>(x),static_cast<double>(y));
to:
double xx = static_cast<double>(x);
double yy = static_cast<double>(y);
double h = std::sqrt(xx*xx + yy*yy);
std::abs(std::complex<double>(x,y))
as in std::hypot page – Hubiex*x + y*y
can lose a couple of bits of precision, if with round to nearest set. This means thatstd::sqrt(x*x+y*y)
can be off by a bit or two. A better algorithm thanstd::sqrt(x*x+y*y)
is needed to get that guarantee. (continued) – Fionnulahypot
has to set the rounding so as to attain that accuracy and then restore the rounding back to your settings. This setting and resetting of rounding behavior is what makesstd:hypot(x,y)
considerably slower thanstd::sqrt(x*x+y*y)
. – Fionnula