I like Sjoerd Visscher's reply, but the extensions -- especially IncoherentInstances
, used in this case to make partial application possible -- might be a bit daunting. Here's a solution that doesn't require any extensions.
First, we define a datatype of functions that know what to do with any number of arguments. You should read a
here as being the "argument type", and b
as being the "return type".
data ListF a b = Cons b (ListF a (a -> b))
Then we can write some (Haskell) functions that munge these (variadic) functions. I use the F
suffix for any functions that happen to be in the Prelude.
headF :: ListF a b -> b
headF (Cons b _) = b
mapF :: (b -> c) -> ListF a b -> ListF a c
mapF f (Cons v fs) = Cons (f v) (mapF (f.) fs)
partialApply :: ListF a b -> [a] -> ListF a b
partialApply fs [] = fs
partialApply (Cons f fs) (x:xs) = partialApply (mapF ($x) fs) xs
apply :: ListF a b -> [a] -> b
apply f xs = headF (partialApply f xs)
For example, the sum
function could be thought of as a variadic function:
sumF :: Num a => ListF a a
sumF = Cons 0 (mapF (+) sumF)
sumExample = apply sumF [3, 4, 5]
However, we also want to be able to deal with normal functions, which don't necessarily know what to do with any number of arguments. So, what to do? Well, like Lisp, we can throw an exception at runtime. Below, we'll use f
as a simple example of a non-variadic function.
f True True True = 32
f True True False = 67
f _ _ _ = 9
tooMany = error "too many arguments"
tooFew = error "too few arguments"
lift0 v = Cons v tooMany
lift1 f = Cons tooFew (lift0 f)
lift2 f = Cons tooFew (lift1 f)
lift3 f = Cons tooFew (lift2 f)
fF1 = lift3 f
fExample1 = apply fF1 [True, True, True]
fExample2 = apply fF1 [True, False]
fExample3 = apply (partialApply fF1 [True, False]) [False]
Of course, if you don't like the boilerplate of defining lift0
, lift1
, lift2
, lift3
, etc. separately, then you need to enable some extensions. But you can get quite far without them!
Here is how you can generalize to a single lift
function. First, we define some standard type-level numbers:
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FlexibleContexts, TypeFamilies, UndecidableInstances #-}
data Z = Z
newtype S n = S n
Then introduce the typeclass for lifting. You should read the type I n a b
as "n
copies of a
as arguments, then a return type of b
".
class Lift n a b where
type I n a b :: *
lift :: n -> I n a b -> ListF a b
instance Lift Z a b where
type I Z a b = b
lift _ b = Cons b tooMany
instance (Lift n a (a -> b), I n a (a -> b) ~ (a -> I n a b)) => Lift (S n) a b where
type I (S n) a b = a -> I n a b
lift (S n) f = Cons tooFew (lift n f)
And here's the examples using f
from before, rewritten using the generalized lift:
fF2 = lift (S (S (S Z))) f
fExample4 = apply fF2 [True, True, True]
fExample5 = apply fF2 [True, False]
fExample6 = apply (partialApply fF2 [True, False]) [False]
apply
. – ShanaunsafeCoerce
, anything is possible... even treating integers and pointers and vice versa... – Thanklessf :: [a] -> b
works out for you. Then you dont needapply
. Calling the single argument version works asf [x]
. – Billetdoux