There is an easy solution for the finding the Affine transform for the system of over-determined equations.
- Note that in general an Affine transform finds a solution to the over-determined system of linear equations Ax=B by using a pseudo-inverse or a similar technique, so
x = (A At )-1 At B
Moreover, this is handled in the core openCV functionality by a simple call to solve(A, B, X).
Familiarize yourself with the code of Affine transform in opencv/modules/imgproc/src/imgwarp.cpp: it really does just two things:
a. rearranges inputs to create a system Ax=B;
b. then calls solve(A, B, X);
NOTE: ignore the function comments in the openCV code - they are confusing and don’t reflect the actual ordering of the elements in the matrices. If you are solving [u, v]’= Affine * [x, y, 1] the rearrangement is:
x1 y1 1 0 0 1
0 0 0 x1 y1 1
x2 y2 1 0 0 1
A = 0 0 0 x2 y2 1
x3 y3 1 0 0 1
0 0 0 x3 y3 1
X = [Affine11, Affine12, Affine13, Affine21, Affine22, Affine23]’
u1 v1
B = u2 v2
u3 v3
All you need to do is to add more points. To make Solve(A, B, X) work on over-determined system add DECOMP_SVD parameter. To see the powerpoint slides on the topic, use this link. If you’d like to learn more about the pseudo-inverse in the context of computer vision, the best source is: ComputerVision, see chapter 15 and appendix C.
If you are still unsure how to add more points see my code below:
// extension for n points;
cv::Mat getAffineTransformOverdetermined( const Point2f src[], const Point2f dst[], int n )
{
Mat M(2, 3, CV_64F), X(6, 1, CV_64F, M.data); // output
double* a = (double*)malloc(12*n*sizeof(double));
double* b = (double*)malloc(2*n*sizeof(double));
Mat A(2*n, 6, CV_64F, a), B(2*n, 1, CV_64F, b); // input
for( int i = 0; i < n; i++ )
{
int j = i*12; // 2 equations (in x, y) with 6 members: skip 12 elements
int k = i*12+6; // second equation: skip extra 6 elements
a[j] = a[k+3] = src[i].x;
a[j+1] = a[k+4] = src[i].y;
a[j+2] = a[k+5] = 1;
a[j+3] = a[j+4] = a[j+5] = 0;
a[k] = a[k+1] = a[k+2] = 0;
b[i*2] = dst[i].x;
b[i*2+1] = dst[i].y;
}
solve( A, B, X, DECOMP_SVD );
delete a;
delete b;
return M;
}
// call original transform
vector<Point2f> src(3);
vector<Point2f> dst(3);
src[0] = Point2f(0.0, 0.0);src[1] = Point2f(1.0, 0.0);src[2] = Point2f(0.0, 1.0);
dst[0] = Point2f(0.0, 0.0);dst[1] = Point2f(1.0, 0.0);dst[2] = Point2f(0.0, 1.0);
Mat M = getAffineTransform(Mat(src), Mat(dst));
cout<<M<<endl;
// call new transform
src.resize(4); src[3] = Point2f(22, 2);
dst.resize(4); dst[3] = Point2f(22, 2);
Mat M2 = getAffineTransformOverdetermined(src.data(), dst.data(), src.size());
cout<<M2<<endl;