Just reading some notes in a purdue lecture about OSs, and it says:
A program sees memory as an array of bytes that goes from address 0 to 2^32-1 (0 to 4GB-1)
Why 4 GB?
Just reading some notes in a purdue lecture about OSs, and it says:
A program sees memory as an array of bytes that goes from address 0 to 2^32-1 (0 to 4GB-1)
Why 4 GB?
Because 32 bits are able to represent numbers up to 232 − 1 = 4294967295 = 4 GiB − 1 and therefore address up to 232 individual bytes which would be 4 GiB then.
There are ways to circumvent that, though. For example using PAE even a 32-bit operating system can support more memory. Historically this has most commonly been used on servers, though. Also, the non-server Windows SKUs don't support it. By now all that is moot, though, given that 64-bit CPUs, OSes and driver support are commonplace.
Because each byte of memory has to have an address. In a 32-bit operating system, an address is 32 bits long; thus, there are 2^32 possible addresses, which means there are 2^32 bytes = 4 GB.
If you have a 4-bit system, this means the address for each byte is 4 binary digits, the probability of all your address will range from 0000
through 1111
which is 2^4 = 16
(2 because there is either 0 or 1), with four bits it's possible to create 16
different values of zeros and ones, If you have 16 different addr. each represent a byte
then you can have a max of 16 bytes
4-bit system will look like this:
For a 32-bit system, your max is 2^32 = 4294967292 bytes
Everybody is saying 2^32 = 4GiB, which is right. Just in case, here is how we got there:
A 32-bit machine uses 32 bits to address memory. Each bit has a value of 0 or 1. If you have 1 bit, you have two possible addresses: 0 or 1. A two-bit system ( pun aside ) has four possible address: 00 =0, 01=1, 10=2, 11=3. 2^2=4. Three bits have 8 possble addresses: 000=0, 001=1, 010=2, 011=3, 100=4, 101=5, 110=6, and 111=7.
Each bit doubles the potential address space, which is why 2^n tells you how many addresses you use for a given number of bits. 2^1 = 2, 2^2 = 2*2 = 4, 2^3 = 2*2*2 = 8, etc.
By the time you get to 32 bits, you are at 4GiB.
2 ^ 32 = 4 * 1024 * 1024 * 1024
That, in bytes, is the definition of 4 GB. In other words a 32-bit register as a memory pointer can address 4 GB of memory and no more.
Actually, it's not as simple as 2^32 = 4294967296 bytes. You see in x86 protected mode, with paging enabled (that is, what you get when you use any modern OS), you don't address memory locations directly, even though the paging translation mechanism is transparent for client applications.
Of a logical 32 bit memory address, when using 4K pages:
As you can see, you have 2^10 (1024) page directories, in each page directory, you have 2^10 page tables and each page is 2^12 (4096) bytes long, hence 2^32 = 4294967296 bytes. The width of the memory bus is conveniently the same as the word length of the CPU but it's not necessary to be like this at all. In fact, more modern x86 CPUs support PAE which enables addressing more than 4GB (or GiB) even in 32-bit mode.
0..2^32
= 0..4,294,967,296
2^32B = 4,194,304KiB = 4,194MiB = 4GiB
Because is the amount of different memory addresses (in Bytes) that can be stored in a Word.
But, in fact, that's not always true (in most of cases it isn't), the OS can handle more physical memory than that (with PAE) and the applications can use less than 4GB of virtual memory (because part of that virtual memory is mapped to the OS, 1GB in Linux and 2GB in Windows, for example).
Another scenario where that doesn't apply is if the memory was addressed by Words instead of Bytes, then the total memory addressable would be 16GB, for example.
A CPU with 32 bit registers will need the operating system to calculate everything in chunks of 32 bits. It's a hardware requirement to which the OS must conform. Similarly, CPUs with 64 bit registers will need an operating system that reads and writes data from the RAM in chunks of 64 bits. (Every time you read data from memory, you need to read it into one of those registers - be it 32 bit, or 64 bit, or 16 bit, etc.)
A 32 bit register can store 2^32 different RAM addresses. Each RAM address corresponds to a byte (8 bits) in modern RAMs. (The 4 GB argument is true only for those RAMs that have addresses for every byte.)
=> 2^32 = 4,294,967,296 addresses, → that corresponds to 4,294,967,296 bytes.
Now, 1 KB = 2^10 bytes or 1024 bytes (in the binary system)
Therefore, 4,294,967,296 bytes / 1024 = 4,194,304 KB
4,194,304 KB / 1024 = 4,096 MB
4,096 MB / 1024 = 4 GB
Mainly due to 32bit OS chosing to support only 2^32-1 addresses.
If the CPU has more than 32 address lines on the FSB, then the 32bit OS can choose to use a paging mechanism to access more than 4GiB. (For example Windows 2000 Advanced Server/Data Center editions on PAE supported Intel/AMD chips)
4 GB = 2^32 bytes. But remember its max 4gb allocated by a 32 bit OS. In reality, the OS will see less e.g. after VRAM allocation.
As previously stated by other users, 32-bit Windows OSes use 32-bit words to store memory addresses.
Actually, most 32-bit chips these days use 36-bit addressing, using Intel's Physical Address Extension (PAE) model. Some operating systems support this directly (Linux, for example).
As Raymond Chen points out, in Windows a 32-bit application can allocate more than 4GB of memory, and you don't need 64-bit Windows to do it. Or even PAE.
For that matter, 64-bit chips don't support the entire 64-bit memory space. I believe they are currently limited to 42-bit space... the 36-bit space that PAE uses, plus the top 8-bit addresses,
© 2022 - 2024 — McMap. All rights reserved.