Can someone explain why the following code behaves the way it does:
import types
class Dummy():
def __init__(self, name):
self.name = name
def __del__(self):
print "delete",self.name
d1 = Dummy("d1")
del d1
d1 = None
print "after d1"
d2 = Dummy("d2")
def func(self):
print "func called"
d2.func = types.MethodType(func, d2)
d2.func()
del d2
d2 = None
print "after d2"
d3 = Dummy("d3")
def func(self):
print "func called"
d3.func = types.MethodType(func, d3)
d3.func()
d3.func = None
del d3
d3 = None
print "after d3"
The output (note that the destructor for d2 is never called) is this (python 2.7)
delete d1
after d1
func called
after d2
func called
delete d3
after d3
Is there a way to "fix" the code so the destructor is called without deleting the method added? I mean, the best place to put the d2.func = None would be in the destructor!
Thanks
[edit] Based on the first few answers, I'd like to clarify that I'm not asking about the merits (or lack thereof) of using __del__
. I tried to create the shortest function that would demonstrate what I consider to be non-intuitive behavior. I'm assuming a circular reference has been created, but I'm not sure why. If possible, I'd like to know how to avoid the circular reference....
__del__
doesn't actually delete anything. Regardless, using__del__
is not safe. – Astromancytypes.MethodType(func, d2)
has a reference tod2
and you put that ond2
, so you have a circular reference. Nothing surprising about it, but why do you do that if that's not what you want? – Baler