yes, yes, and yes (part 2)
So I believe this answer gets closer to the core of your question – can we make any recursive program stack-safe? Even if recursion isn't in tail position? Even if the host language doesn't have tail-call elimination? Yes. Yes. And yes – with one small requirement...
The end of my first answer talked about loop
as a sort of evaluator and then described a rough idea of how it would be implemented. The theory sounded good but I wanted to make sure the technique works in practice. So here we go!
non-trivial program
Fibonacci is great for this. The binary recursion implementation builds a big recursive tree and neither recursive call is in tail position. If we can get this program right, we can have reasonable confidence we implemented loop
correctly.
And here's that small requirement: You cannot call a function to recur. Instead of f (x)
, you will write call (f, x)
–
const add = (a = 0, b = 0) =>
a + b
const fib = (init = 0) =>
loop
( (n = init) =>
n < 2
? n
: add (recur (n - 1), recur (n - 2))
: call (add, recur (n - 1), recur (n - 2))
)
fib (10)
// => 55
But these call
and recur
functions are nothing special. They only create ordinary JS objects –
const call = (f, ...values) =>
({ type: call, f, values })
const recur = (...values) =>
({ type: recur, values })
So in this program, we have a call
that depends on two recur
s. Each recur
has the potential to spawn yet another call
and additional recur
s. A non-trivial problem indeed, but in reality we're just dealing with a well-defined recursive data structure.
writing loop
If loop
is going to process this recursive data structure, it'll be easiest if we can write loop
as a recursive program. But aren't we just going to run into a stack-overflow somewhere else then? Let's find out!
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
expr.type === recur
? // todo: when given { type: recur, ... }
: expr.type === call
? // todo: when given { type: call, ... }
: k (expr) // default: non-tagged value; no further evaluation necessary
return aux1 (f ())
}
So loop
takes a function to loop, f
. We expect f
to return an ordinary JS value when the computation is completed. Otherwise return either call
or recur
to grow the computation.
These todos are somewhat trivial to fill in. Let's do that now –
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
expr.type === recur
? aux (expr.values, values => aux1 (f (...values), k))
: expr.type === call
? aux (expr.values, values => aux1 (expr.f (...values), k))
: k (expr)
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
// todo: implement me
return aux1 (f ())
}
So intuitively, aux1
(“auxiliary one”) is the magic wand we wave over one expression, expr
, and the result
comes back in the continuation. In other words –
// evaluate expr to get the result
aux1 (expr, result => ...)
To evaluate recur
or call
, we must first evaluate the corresponding values
. We wish we could write something like –
// can't do this!
const r =
expr.values .map (v => aux1 (v, ...))
return k (expr.f (...r))
What would the continuation ...
be? We can't call aux1
in .map
like that. Instead, we need another magic wand that can take an array of expressions, and pass the resulting values to its continuation; such as aux
–
// evaluate each expression and get all results as array
aux (expr.values, values => ...)
meat & potatoes
Ok, this is the probably the toughest part of the problem. For each expression in the input array, we have to call aux1
and chain the continuation to the next expression, finally passing the values to the user-supplied continuation, k
–
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
exprs.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(k)
We won't end up using this, but it helps to see what we're doing in aux
expressed as an ordinary reduce
and append
–
// cont : 'a -> ('a -> 'b) -> 'b
const cont = x =>
k => k (x)
// append : ('a array, 'a) -> 'a array
const append = (xs, x) =>
[ ...xs, x ]
// lift2 : (('a, 'b) -> 'c, 'a cont, 'b cont) -> 'c cont
const lift2 = (f, mx, my) =>
k => mx (x => my (y => k (f (x, y))))
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
exprs.reduce
( (mr, e) =>
lift2 (append, mr, k => aux1 (e, k))
, cont ([])
)
Putting it all together we get –
// identity : 'a -> 'a
const identity = x =>
x
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
expr.type === recur
? aux (expr.values, values => aux1 (f (...values), k))
: expr.type === call
? aux (expr.values, values => aux1 (expr.f (...values), k))
: k (expr)
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
exprs.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(k)
return aux1 (f ())
}
Time for a little celebration –
fib (10)
// => 55
But only a little –
fib (30)
// => RangeError: Maximum call stack size exceeded
your original problem
Before we attempt to fix loop
, let's revisit the program in your question, foldr
, and see how it's expressed using loop
, call
, and recur
–
const foldr = (f, init, xs = []) =>
loop
( (i = 0) =>
i >= xs.length
? init
: f (recur (i + 1), xs[i])
: call (f, recur (i + 1), xs[i])
)
And how does it work?
// small : number array
const small =
[ 1, 2, 3 ]
// large : number array
const large =
Array .from (Array (2e4), (_, n) => n + 1)
foldr ((a, b) => `(${a}, ${b})`, 0, small)
// => (((0, 3), 2), 1)
foldr ((a, b) => `(${a}, ${b})`, 0, large)
// => RangeError: Maximum call stack size exceeded
Okay, it works but for small
but it blows up the stack for large
. But this is what we expected, right? After all, loop
is just an ordinary recursive function, bound for an inevitable stack-overflow... right?
Before we go on, verify the results to this point in your own browser –
// call : (* -> 'a expr, *) -> 'a expr
const call = (f, ...values) =>
({ type: call, f, values })
// recur : * -> 'a expr
const recur = (...values) =>
({ type: recur, values })
// identity : 'a -> 'a
const identity = x =>
x
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
expr.type === recur
? aux (expr.values, values => aux1 (f (...values), k))
: expr.type === call
? aux (expr.values, values => aux1 (expr.f (...values), k))
: k (expr)
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
exprs.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(k)
return aux1 (f ())
}
// fib : number -> number
const fib = (init = 0) =>
loop
( (n = init) =>
n < 2
? n
: call
( (a, b) => a + b
, recur (n - 1)
, recur (n - 2)
)
)
// foldr : (('b, 'a) -> 'b, 'b, 'a array) -> 'b
const foldr = (f, init, xs = []) =>
loop
( (i = 0) =>
i >= xs.length
? init
: call (f, recur (i + 1), xs[i])
)
// small : number array
const small =
[ 1, 2, 3 ]
// large : number array
const large =
Array .from (Array (2e4), (_, n) => n + 1)
console .log (fib (10))
// 55
console .log (foldr ((a, b) => `(${a}, ${b})`, 0, small))
// (((0, 3), 2), 1)
console .log (foldr ((a, b) => `(${a}, ${b})`, 0, large))
// RangeError: Maximum call stack size exc
bouncing loops
I have too many answers on converting functions to CPS and bouncing them using trampolines. This answer isn't going focus on that much. Above we have aux1
and aux
as CPS tail-recursive functions. The following transformation can be done in a mechanical way.
Like we did in the other answer, for every function call we find, f (x)
, convert it to call (f, x)
–
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
expr.type === recur
? call (aux, expr.values, values => call (aux1, f (...values), k))
: expr.type === call
? call (aux, expr.values, values => call (aux1, expr.f (...values), k))
: call (k, expr)
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
call
( exprs.reduce
( (mr, e) =>
k => call (mr, r => call (aux1, e, x => call (k, [ ...r, x ])))
, k => call (k, [])
)
, k
)
return aux1 (f ())
return run (aux1 (f ()))
}
Wrap the return
in run
, which is a simplified trampoline –
// run : * -> *
const run = r =>
{ while (r && r.type === call)
r = r.f (...r.values)
return r
}
And how does it work now?
// small : number array
const small =
[ 1, 2, 3 ]
// large : number array
const large =
Array .from (Array (2e4), (_, n) => n + 1)
fib (30)
// 832040
foldr ((a, b) => `(${a}, ${b})`, 0, small)
// => (((0, 3), 2), 1)
foldr ((a, b) => `(${a}, ${b})`, 0, large)
// => (Go and see for yourself...)
Witness stack-safe recursion in any JavaScript program by expanding and running the snippet below –
// call : (* -> 'a expr, *) -> 'a expr
const call = (f, ...values) =>
({ type: call, f, values })
// recur : * -> 'a expr
const recur = (...values) =>
({ type: recur, values })
// identity : 'a -> 'a
const identity = x =>
x
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
expr.type === recur
? call (aux, expr.values, values => call (aux1, f (...values), k))
: expr.type === call
? call (aux, expr.values, values => call (aux1, expr.f (...values), k))
: call (k, expr)
// aux : (('a expr) array, 'a array -> 'b) -> 'b
const aux = (exprs = [], k) =>
call
( exprs.reduce
( (mr, e) =>
k => call (mr, r => call (aux1, e, x => call (k, [ ...r, x ])))
, k => call (k, [])
)
, k
)
return run (aux1 (f ()))
}
// run : * -> *
const run = r =>
{ while (r && r.type === call)
r = r.f (...r.values)
return r
}
// fib : number -> number
const fib = (init = 0) =>
loop
( (n = init) =>
n < 2
? n
: call
( (a, b) => a + b
, recur (n - 1)
, recur (n - 2)
)
)
// foldr : (('b, 'a) -> 'b, 'b, 'a array) -> 'b
const foldr = (f, init, xs = []) =>
loop
( (i = 0) =>
i >= xs.length
? init
: call (f, recur (i + 1), xs[i])
)
// small : number array
const small =
[ 1, 2, 3 ]
// large : number array
const large =
Array .from (Array (2e4), (_, n) => n + 1)
console .log (fib (30))
// 832040
console .log (foldr ((a, b) => `(${a}, ${b})`, 0, small))
// (((0, 3), 2), 1)
console .log (foldr ((a, b) => `(${a}, ${b})`, 0, large))
// YES! YES! YES!
evaluation visualisation
Let's evaluate a simple expression using foldr
and see if we can peer into how loop
does its magic –
const add = (a, b) =>
a + b
foldr (add, 'z', [ 'a', 'b' ])
// => 'zba'
You can follow along by pasting this in a text-editor that supports bracket highlighting –
// =>
aux1
( call (add, recur (1), 'a')
, identity
)
// =>
aux1
( { call
, f: add
, values:
[ { recur, values: [ 1 ] }
, 'a'
]
}
, identity
)
// =>
aux
( [ { recur, values: [ 1 ] }
, 'a'
]
, values => aux1 (add (...values), identity)
)
// =>
[ { recur, values: [ 1 ] }
, 'a'
]
.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(values => aux1 (add (...values), identity))
// beta reduce outermost k
(k => (k => (k => k ([])) (r => aux1 ({ recur, values: [ 1 ] }, x => k ([ ...r, x ])))) (r => aux1 ('a', x => k ([ ...r, x ])))) (values => aux1 (add (...values), identity))
// beta reduce outermost k
(k => (k => k ([])) (r => aux1 ({ recur, values: [ 1 ] }, x => k ([ ...r, x ])))) (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ])))
// beta reduce outermost k
(k => k ([])) (r => aux1 ({ recur, values: [ 1 ] }, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...r, x ])))
// beta reduce outermost r
(r => aux1 ({ recur, values: [ 1 ] }, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...r, x ]))) ([])
// =>
aux1
( { recur, values: [ 1 ] }
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux
( [ 1 ]
, values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))
)
// =>
[ 1 ]
.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ]))))
// beta reduce outermost k
(k => (k => k ([])) (r => aux1 (1, x => k ([ ...r, x ])))) (values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ]))))
// beta reduce outermost k
(k => k ([])) (r => aux1 (1, x => (values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ])))
// beta reduce outermost r
(r => aux1 (1, x => (values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([])
// =>
aux1
( 1
, x => (values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[], x ])
)
// beta reduce outermost x
(x => (values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[], x ])) (1)
// =>
(values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[], 1 ])
// =>
(values => aux1 (f (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ 1 ])
// =>
aux1
( f (...[ 1 ])
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( f (1)
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( call (add, recur (2), 'b')
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( { call
, f: add
, values:
[ { recur, values: [ 2 ] }
, 'b'
]
}
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux
( [ { recur, values: [ 2 ] }
, 'b'
]
, values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))
)
// =>
[ { recur, values: [ 2 ] }
, 'b'
]
.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ]))))
// beta reduce outermost k
(k => (k => (k => k ([])) (r => aux1 ({ recur, values: [ 2 ] }, x => k ([ ...r, x ])))) (r => aux1 ('b', x => k ([ ...r, x ])))) (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ]))))
// beta reduce outermost k
(k => (k => k ([])) (r => aux1 ({ recur, values: [ 2 ] }, x => k ([ ...r, x ])))) (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ])))
// beta reduce outermost k
(k => k ([])) (r => aux1 ({ recur, values: [ 2 ] }, x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...r, x ])))
// beta reduce outermost r
(r => aux1 ({ recur, values: [ 2 ] }, x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...r, x ]))) ([])
// =>
aux1
( { recur, values: [ 2 ] }
, x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux
( [ 2 ]
, values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))
)
// =>
[ 2 ]
.reduce
( (mr, e) =>
k => mr (r => aux1 (e, x => k ([ ...r, x ])))
, k => k ([])
)
(values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ]))))
// beta reduce outermost k
(k => (k => k ([])) (r => aux1 (2, x => k ([ ...r, x ])))) (values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ]))))
// beta reduce outermost k
(k => k ([])) (r => aux1 (2, x => (values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ])))
// beta reduce outermost r
(r => aux1 (2, x => (values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([])
// =>
aux1
( 2
, x => (values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[], x ])
)
// beta reduce outermost x
(x => (values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[], x ])) (2)
// spread []
(values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[], 2 ])
// beta reduce outermost values
(values => aux1 (f (...values), (x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])))) ([ 2 ])
// spread [ 2 ]
aux1
( f (...[ 2 ])
, x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( f (2)
, x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( 'z'
, x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])
)
// beta reduce outermost x
(x => (r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], x ])) ('z')
// spread []
(r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ ...[], 'z' ])
// beta reduce outermost r
(r => aux1 ('b', x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...r, x ]))) ([ 'z' ])
// =>
aux1
( 'b'
, x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[ 'z' ], x ])
)
// beta reduce outermost x
(x => (values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[ 'z' ], x ])) ('b')
// spread ['z']
(values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ ...[ 'z' ], 'b' ])
// beta reduce outermost values
(values => aux1 (add (...values), (x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])))) ([ 'z', 'b' ])
// =>
aux1
( add (...[ 'z', 'b' ])
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( add ('z', 'b')
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// =>
aux1
( 'zb'
, x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])
)
// beta reduce outermost x
(x => (r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], x ])) ('zb')
// spead []
(r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ ...[], 'zb' ])
// beta reduce outermost r
(r => aux1 ('a', x => (values => aux1 (add (...values), identity)) ([ ...r, x ]))) ([ 'zb' ])
// =>
aux1
( 'a'
, x => (values => aux1 (f (...values), identity)) ([ ...[ 'zb' ], x ])
)
// beta reduce outermost x
(x => (values => aux1 (f (...values), identity)) ([ ...[ 'zb' ], x ])) ('a')
// spead ['zb']
(values => aux1 (f (...values), identity)) ([ ...[ 'zb' ], 'a' ])
// beta reduce values
(values => aux1 (f (...values), identity)) ([ 'zb', 'a' ])
// spread [ 'zb', 'a' ]
aux1
( f (...[ 'zb', 'a' ])
, identity
)
// =>
aux1
( f ('zb', 'a')
, identity
)
// =>
aux1
( 'zba'
, identity
)
// =>
identity ('zba')
// =>
'zba'
Closures sure are amazing. Above we can confirm that CPS keeps the computation flat: we see either aux
, aux1
, or a simple beta reduction in each step. This is what makes it possible for us to put loop
on a trampoline.
And this is where we double-dip on call
. We use call
to create an object for our loop
ing computations, but aux
and aux1
also spit out call
s that are handled by run
. I could've (maybe should've) made a different tag for this, but call
was sufficiently generic that I could use it in both places.
So above where we see aux (...)
and aux1 (...)
and beta reductions (x => ...) (...)
, we simply replace them with call (aux, ...)
, call (aux1, ...)
and call (x => ..., ...)
respectively. Pass these to run
and that's it — Stack-safe recursion in any shape or form. Simple as that 😅
tuning & optimisation
We can see that loop
, although a small program, is doing a tremendous amount of work to keep your mind free from stack worries. We can also see where loop
is not the most efficient; in particular with the sheer amount of rest parameters and spread arguments (...
) we noticed. These are costly and if we can write loop
without them, we can expect to see a big memory and speed improvement –
// loop : (unit -> 'a expr) -> 'a
const loop = f =>
{ // aux1 : ('a expr, 'a -> 'b) -> 'b
const aux1 = (expr = {}, k = identity) =>
{ switch (expr.type)
{ case recur:
// rely on aux to do its magic
return call (aux, f, expr.values, k)
case call:
// rely on aux to do its magic
return call (aux, expr.f, expr.values, k)
default:
return call (k, expr)
}
}
// aux : (* -> 'a, (* expr) array, 'a -> 'b) -> 'b
const aux = (f, exprs = [], k) =>
{ switch (exprs.length)
{ case 0: // nullary continuation
return call (aux1, f (), k)
case 1: // unary
return call
( aux1
, exprs[0]
, x => call (aux1, f (x), k)
)
case 2: // binary
return call
( aux1
, exprs[0]
, x =>
call
( aux1
, exprs[1]
, y => call (aux1, f (x, y), k)
)
)
case 3: // ternary ...
case 4: // quaternary ...
default: // variadic
return call
( exprs.reduce
( (mr, e) =>
k => call (mr, r => call (aux1, e, x => call (k, [ ...r, x ])))
, k => call (k, [])
)
, values => call (aux1, f (...values), k)
)
}
}
return run (aux1 (f ()))
}
So now we only resort to rest/spread (...
) when the user writes a loop or continuation that has more than four (4) parameters. This means that we can avoid the highly expensive variadiac lift using .reduce
in the most common cases. I also noticed that switch
offers a speed improvement (O(1)
, would be my assumption) compared to chained ternary ?:
expressions, O(n)
.
This makes the definition of loop
a bit bigger, but this trade-off is more than worth it. A preliminary measurement shows improvement of over 100% speed increase and over 50% less memory –
// before
fib(30) // 5542.26 ms (25.7 MB)
foldr(20000) // 104.96 ms (31.07 MB)
// after
fib(30) // 2472.58 ms (16.29 MB)
foldr(20000) // 45.33 ms (12.19 MB)
Of course there are many more ways in which loop
could optimised, but the point of this exercise isn't to show you all of them. loop
is a well-defined, pure function that gives you the comfort and freedom to make refactors as they're necessary.
PART 3 added: increasing loop's capabilities
f
lazy or iterate from the right. – Midsummergo(i + 1).runCont(...)
does not havego
in tail position -runCont
is the tail call – Browngo()
runs and finishes to give{runCont: ...}
then.runCont(...)
is called – Brown