My first step was to load the data via RCurl::getURL()
and rjson::fromJSON()
, as per your second code sample:
##--------------------------------------
## libraries
##--------------------------------------
library(rjson);
library(RCurl);
##--------------------------------------
## get data
##--------------------------------------
URL <- 'https://fm.formularynavigator.com/jsonFiles/publish/11/47/providers.json';
jsonRList <- fromJSON(getURL(URL)); ## recursive list representing the original JSON data
Next, to get a deep understanding of the structure and cleanness of the data, I wrote a set of helper functions:
##--------------------------------------
## helper functions
##--------------------------------------
## apply a function to a set of nodes at the same depth level in a recursive list structure
levelApply <- function(
nodes, ## the root node of the list (recursive calls pass deeper nodes as they drill down into the list)
keyList, ## another list, expected to hold a sequence of keys (component names, integer indexes, or NULL for all) specifying which nodes to select at each depth level
func=identity, ## a function to run separately on each node once keyList has been exhausted
..., ## further arguments passed to func()
joinFunc=NULL ## optional function for joining the return values of func() at each successive depth, as the stack is unwound. An alternative is calling unlist() on the result, but careful not to lose the top-level index association
) {
if (length(keyList) == 0L) {
ret <- if (is.null(nodes)) NULL else func(nodes,...)
} else if (is.null(keyList[[1L]]) || length(keyList[[1L]]) != 1L) {
ret <- lapply(if (is.null(keyList[[1L]])) nodes else nodes[keyList[[1L]]],levelApply,keyList[-1L],func,...,joinFunc=joinFunc);
if (!is.null(joinFunc))
ret <- do.call(joinFunc,ret);
} else {
ret <- levelApply(nodes[[keyList[[1L]]]],keyList[-1L],func,...,joinFunc=joinFunc);
}; ## end if
ret;
}; ## end if
## these two wrappers automatically attempt to simplify the results of func() to a vector or matrix/data.frame, respectively
levelApplyToVec <- function(...) levelApply(...,joinFunc=c);
levelApplyToFrame <- function(...) levelApply(...,joinFunc=rbind); ## can return matrix or data.frame, depending on ret
The key to understanding the above is the keyList
parameter. Let's say you have a list like this:
list(NULL,'addresses',2:3,'city')
That would select all city strings underneath the second and third address elements underneath the addresses list underneath all elements of the main list.
There are no built-in apply functions in R that can operate on such "parallel" node selections (rapply()
is close, but no cigar), which is why I wrote my own. levelApply()
finds each of the matching nodes and runs the given func()
on it (default identity()
, thus returning the node itself), returning the results to the caller, either joined as per joinFunc()
, or in the same recursive list structure in which those nodes existed in the input list. Quick demo:
unname(levelApplyToVec(jsonRList,list(4L,'addresses',1:2,c('address','city'))));
## [1] "1001 Noble St" "Fairbanks" "1650 Cowles St" "Fairbanks"
Here are the remaining helper functions I wrote in the process of working on this problem:
## for the given node selection key union, retrieve a data.frame of logicals representing the unique combinations of keys possessed by the selected nodes, possibly with a count
keyCombos <- function(node,keyList,allKeys) `rownames<-`(setNames(unique(as.data.frame(levelApplyToFrame(node,keyList,function(h) allKeys%in%names(h)))),allKeys),NULL);
keyCombosWithCount <- function(node,keyList,allKeys) { ks <- keyCombos(node,keyList,allKeys); ks$.count <- unname(apply(ks,1,function(combo) sum(levelApplyToVec(node,keyList,function(h) identical(sort(names(ks)[combo]),sort(names(h))))))); ks; };
## return a simple two-component list with type (list, namedlist, or atomic vector type) and len for non-namedlist types; tlStr() returns a nice stringified form of said list
tl <- function(e) { if (is.null(e)) return(NULL); ret <- typeof(e); if (ret == 'list' && !is.null(names(e))) ret <- list(type='namedlist') else ret <- list(type=ret,len=length(e)); ret; };
tlStr <- function(e) { if (is.null(e)) return(NA); ret <- tl(e); if (is.null(ret$len)) ret <- ret$type else ret <- paste0(ret$type,'[',ret$len,']'); ret; };
## stringification functions for display
mkcsv <- function(v) paste0(collapse=',',v);
keyListToStr <- function(keyList) paste0(collapse='','/',sapply(keyList,function(key) if (is.null(key)) '*' else paste0(collapse=',',key)));
## return a data.frame giving a comma-separated list of the unique types possessed by the selected nodes; useful for learning about the structure of the data
keyTypes <- function(node,keyList,allKeys) data.frame(key=allKeys,tl=sapply(allKeys,function(key) mkcsv(unique(na.omit(levelApplyToVec(node,c(keyList,key),tlStr))))),row.names=NULL);
## useful for testing; can call npiToFrame() to show the row with a specified npi value, in a nice vertical form
rowToFrame <- function(dfrow) data.frame(column=names(dfrow),value=c(as.matrix(dfrow)));
getNPIRow <- function(df,npi) which(df$npi == npi);
npiToFrame <- function(df,npi) rowToFrame(df[getNPIRow(df,npi),]);
I've tried to capture the sequence of commands I ran against the data as I first examined it. Below are the results, showing the commands I ran, the command output, and leading comments describing what my intention was, and my conclusion from the output:
##--------------------------------------
## data examination
##--------------------------------------
## type of object -- plain unnamed list => array, length 3256
levelApplyToVec(jsonRList,list(),tlStr);
## [1] "list[3256]"
## unique types of main array elements => all named lists => hashes
unique(levelApplyToVec(jsonRList,list(NULL),tlStr));
## [1] "namedlist"
## get the union of keys among all hashes
allKeys <- unique(levelApplyToVec(jsonRList,list(NULL),names)); allKeys;
## [1] "npi" "type" "facility_name" "facility_type" "addresses" "plans" "last_updated_on" "name" "speciality" "accepting" "languages" "gender"
## get the unique pattern of keys among all hashes, and how often each occurs => shows there are inconsistent key sets among the top-level hashes
keyCombosWithCount(jsonRList,list(NULL),allKeys);
## npi type facility_name facility_type addresses plans last_updated_on name speciality accepting languages gender .count
## 1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE 279
## 2 TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 2973
## 3 TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE 4
## for each key, get the unique set of types it takes on among all hashes, ignoring hashes where the key is omitted => some scalar strings, some multi-string, addresses is a variable-length list, plans is length-9 list, and name is a hash
keyTypes(jsonRList,list(NULL),allKeys);
## key tl
## 1 npi character[1]
## 2 type character[1]
## 3 facility_name character[1]
## 4 facility_type character[1],character[2],character[3]
## 5 addresses list[1],list[2],list[3],list[6],list[5],list[7],list[4],list[8],list[9],list[13],list[12]
## 6 plans list[9]
## 7 last_updated_on character[1]
## 8 name namedlist
## 9 speciality character[1],character[2],character[3],character[4]
## 10 accepting character[1]
## 11 languages character[2],character[3],character[4],character[6],character[5]
## 12 gender character[1]
## must look deeper into addresses array, plans array, and name hash; we'll have to flatten them
## ==== addresses =====
## note: the addresses key is always present under main array elements
## unique types of address elements across all hashes => all named lists, thus nested hashes
unique(levelApplyToVec(jsonRList,list(NULL,'addresses',NULL),tlStr));
## [1] "namedlist"
## union of keys among all address element hashes
allAddressKeys <- unique(levelApplyToVec(jsonRList,list(NULL,'addresses',NULL),names)); allAddressKeys;
## [1] "address" "city" "state" "zip" "phone" "address_2"
## pattern of keys among address elements => only address_2 varies, similar frequency with it as without it
keyCombosWithCount(jsonRList,list(NULL,'addresses',NULL),allAddressKeys);
## address city state zip phone address_2 .count
## 1 TRUE TRUE TRUE TRUE TRUE FALSE 1898
## 2 TRUE TRUE TRUE TRUE TRUE TRUE 2575
## for each address element key, get the unique set of types it takes on among all hashes, ignoring hashes where the key (only address_2 in this case) is omitted => all scalar strings
keyTypes(jsonRList,list(NULL,'addresses',NULL),allAddressKeys);
## key tl
## 1 address character[1]
## 2 city character[1]
## 3 state character[1]
## 4 zip character[1]
## 5 phone character[1]
## 6 address_2 character[1]
## ==== plans =====
## note: the plans key is always present under main array elements
## unique types of plan elements across all hashes => all named lists, thus nested hashes
unique(levelApplyToVec(jsonRList,list(NULL,'plans',NULL),tlStr));
## [1] "namedlist"
## union of keys among all plan element hashes
allPlanKeys <- unique(levelApplyToVec(jsonRList,list(NULL,'plans',NULL),names)); allPlanKeys;
## [1] "plan_id_type" "plan_id" "network_tier"
## pattern of keys among plan elements => good, all plan elements have all 3 keys, perfectly consistent
keyCombosWithCount(jsonRList,list(NULL,'plans',NULL),allPlanKeys);
## plan_id_type plan_id network_tier .count
## 1 TRUE TRUE TRUE 29304
## for each plan element key, get the unique set of types it takes on among all hashes (note: no plan keys are ever omitted, so don't have to worry about that) => all scalar strings
keyTypes(jsonRList,list(NULL,'plans',NULL),allPlanKeys);
## key tl
## 1 plan_id_type character[1]
## 2 plan_id character[1]
## 3 network_tier character[1]
## ==== name =====
## note: the name key is *not* always present under main array elements
## union of keys among all name hashes
allNameKeys <- unique(levelApplyToVec(jsonRList,list(NULL,'name'),names)); allNameKeys;
## [1] "first" "middle" "last"
## pattern of keys among name elements => sometimes middle is missing, relatively infrequently
keyCombosWithCount(jsonRList,list(NULL,'name'),allNameKeys);
## first middle last .count
## 1 TRUE TRUE TRUE 2679
## 2 TRUE FALSE TRUE 298
## for each name element key, get the unique set of types it takes on among all hashes, ignoring hashes where the key (only middle in this case) is omitted => all scalar strings
keyTypes(jsonRList,list(NULL,'name'),allNameKeys);
## key tl
## 1 first character[1]
## 2 middle character[1]
## 3 last character[1]
Here's my summary of the data:
- one top-level main list, length 3256.
- each element is a hash with inconsistent key sets. There are 12 keys in total across all main hashes, with 3 patterns of key sets present.
- 6 of the hash values are scalar strings, 3 are variable-length string vectors,
addresses
is a list of variable length, plans
is a list always of length 9, and name
is a hash.
- each
addresses
list element is a hash with 5 or 6 keys to scalar strings, address_2
being the inconsistent one.
- each
plans
list element is a hash with 3 keys to scalar strings, no inconsistencies.
- each
name
hash has first
and last
but not always middle
scalar strings.
The most important observation here is that there are no type-inconsistencies between parallel nodes (aside from omissions and length differences). That means we can combine all parallel nodes into vectors with no considerations of type coercion. We can flatten all the data into a two-dimensional structure provided we associate columns with deep-enough nodes, such that all columns correspond to a single scalar string node in the input list.
Below is my solution. Note that it depends on the helper functions tl()
, keyListToStr()
, and mkcsv()
I defined earlier.
##--------------------------------------
## solution
##--------------------------------------
## recursively traverse the list structure, building up a column at each leaf node
extractLevelColumns <- function(
nodes, ## current level node selection
..., ## additional arguments to data.frame()
keyList=list(), ## current key path under main list
sep=NULL, ## optional string separator on which to join multi-element vectors; if NULL, will leave as separate columns
mkname=function(keyList,maxLen) paste0(collapse='.',if (is.null(sep) && maxLen == 1L) keyList[-length(keyList)] else keyList) ## name builder from current keyList and character vector max length across node level; default to dot-separated keys, and remove last index component for scalars
) {
cat(sprintf('extractLevelColumns(): %s\n',keyListToStr(keyList)));
if (length(nodes) == 0L) return(list()); ## handle corner case of empty main list
tlList <- lapply(nodes,tl);
typeList <- do.call(c,lapply(tlList,`[[`,'type'));
if (length(unique(typeList)) != 1L) stop(sprintf('error: inconsistent types (%s) at %s.',mkcsv(typeList),keyListToStr(keyList)));
type <- typeList[1L];
if (type == 'namedlist') { ## hash; recurse
allKeys <- unique(do.call(c,lapply(nodes,names)));
ret <- do.call(c,lapply(allKeys,function(key) extractLevelColumns(lapply(nodes,`[[`,key),...,keyList=c(keyList,key),sep=sep,mkname=mkname)));
} else if (type == 'list') { ## array; recurse
lenList <- do.call(c,lapply(tlList,`[[`,'len'));
maxLen <- max(lenList,na.rm=T);
allIndexes <- seq_len(maxLen);
ret <- do.call(c,lapply(allIndexes,function(index) extractLevelColumns(lapply(nodes,function(node) if (length(node) < index) NULL else node[[index]]),...,keyList=c(keyList,index),sep=sep,mkname=mkname))); ## must be careful to guard out-of-bounds to NULL; happens automatically with string keys, but not with integer indexes
} else if (type%in%c('raw','logical','integer','double','complex','character')) { ## atomic leaf node; build column
lenList <- do.call(c,lapply(tlList,`[[`,'len'));
maxLen <- max(lenList,na.rm=T);
if (is.null(sep)) {
ret <- lapply(seq_len(maxLen),function(i) setNames(data.frame(sapply(nodes,function(node) if (length(node) < i) NA else node[[i]]),...),mkname(c(keyList,i),maxLen)));
} else {
## keep original type if maxLen is 1, IOW don't stringify
ret <- list(setNames(data.frame(sapply(nodes,function(node) if (length(node) == 0L) NA else if (maxLen == 1L) node else paste(collapse=sep,node)),...),mkname(keyList,maxLen)));
}; ## end if
} else stop(sprintf('error: unsupported type %s at %s.',type,keyListToStr(keyList)));
if (is.null(ret)) ret <- list(); ## handle corner case of exclusively empty sublists
ret;
}; ## end extractLevelColumns()
## simple interface function
flattenList <- function(mainList,...) do.call(cbind,extractLevelColumns(mainList,...));
The extractLevelColumns()
function traverses the input list and extracts all node values at each leaf node position, combining them into a vector with NA where the value was missing, and then transforming to a one-column data.frame. The column name is set immediately, leveraging a parameterized mkname()
function to define the stringification of the keyList
to the string column name. Multiple columns are returned as a list of data.frames from each recursive call and likewise from the top-level call.
It also validates that there are no type-inconsistencies between parallel nodes. Although I manually verified the consistency of the data earlier, I tried to write as generic and reusable a solution as possible, because it's always a good idea to do so, so this validation step is appropriate.
flattenList()
is the primary interface function; it simply calls extractLevelColumns()
and then do.call(cbind,...)
to combine the columns into a single data.frame.
An advantage of this solution is that it's entirely generic; it can handle an unlimited number of depth levels, by virtue of being fully recursive. Additionally, it has no package dependencies, parameterizes the column name building logic, and forwards variadic arguments to data.frame()
, so for example you can pass stringsAsFactors=F
to inhibit the automatic factorization of character columns normally done by data.frame()
, and/or row.names={namevector}
to set the row names of the resulting data.frame, or row.names=NULL
to prevent the use of the top-level list component names as row names, if such existed in the input list.
I've also added a sep
parameter which defaults to NULL
. If NULL
, multi-element leaf nodes will be separated into multiple columns, one per element, with an index suffix on the column name for differentiation. Otherwise, it's taken as a string separator on which to join all elements to a single string, and only one column is generated for the node.
In terms of performance, it's very fast. Here's a demo:
## actually run it
system.time({ df <- flattenList(jsonRList); });
## extractLevelColumns(): /
## extractLevelColumns(): /npi
## extractLevelColumns(): /type
## extractLevelColumns(): /facility_name
## extractLevelColumns(): /facility_type
## extractLevelColumns(): /addresses
## extractLevelColumns(): /addresses/1
## extractLevelColumns(): /addresses/1/address
## extractLevelColumns(): /addresses/1/city
##
## ... snip ...
##
## extractLevelColumns(): /plans/9/network_tier
## extractLevelColumns(): /last_updated_on
## extractLevelColumns(): /name
## extractLevelColumns(): /name/first
## extractLevelColumns(): /name/middle
## extractLevelColumns(): /name/last
## extractLevelColumns(): /speciality
## extractLevelColumns(): /accepting
## extractLevelColumns(): /languages
## extractLevelColumns(): /gender
## user system elapsed
## 2.265 0.000 2.268
Result:
class(df); dim(df); names(df);
## [1] "data.frame"
## [1] 3256 126
## [1] "npi" "type" "facility_name" "facility_type.1" "facility_type.2" "facility_type.3" "addresses.1.address" "addresses.1.city" "addresses.1.state"
## [10] "addresses.1.zip" "addresses.1.phone" "addresses.1.address_2" "addresses.2.address" "addresses.2.city" "addresses.2.state" "addresses.2.zip" "addresses.2.phone" "addresses.2.address_2"
## [19] "addresses.3.address" "addresses.3.city" "addresses.3.state" "addresses.3.zip" "addresses.3.phone" "addresses.3.address_2" "addresses.4.address" "addresses.4.city" "addresses.4.state"
## [28] "addresses.4.zip" "addresses.4.phone" "addresses.4.address_2" "addresses.5.address" "addresses.5.address_2" "addresses.5.city" "addresses.5.state" "addresses.5.zip" "addresses.5.phone"
## [37] "addresses.6.address" "addresses.6.address_2" "addresses.6.city" "addresses.6.state" "addresses.6.zip" "addresses.6.phone" "addresses.7.address" "addresses.7.address_2" "addresses.7.city"
## [46] "addresses.7.state" "addresses.7.zip" "addresses.7.phone" "addresses.8.address" "addresses.8.address_2" "addresses.8.city" "addresses.8.state" "addresses.8.zip" "addresses.8.phone"
## [55] "addresses.9.address" "addresses.9.address_2" "addresses.9.city" "addresses.9.state" "addresses.9.zip" "addresses.9.phone" "addresses.10.address" "addresses.10.address_2" "addresses.10.city"
## [64] "addresses.10.state" "addresses.10.zip" "addresses.10.phone" "addresses.11.address" "addresses.11.address_2" "addresses.11.city" "addresses.11.state" "addresses.11.zip" "addresses.11.phone"
## [73] "addresses.12.address" "addresses.12.address_2" "addresses.12.city" "addresses.12.state" "addresses.12.zip" "addresses.12.phone" "addresses.13.address" "addresses.13.city" "addresses.13.state"
## [82] "addresses.13.zip" "addresses.13.phone" "plans.1.plan_id_type" "plans.1.plan_id" "plans.1.network_tier" "plans.2.plan_id_type" "plans.2.plan_id" "plans.2.network_tier" "plans.3.plan_id_type"
## [91] "plans.3.plan_id" "plans.3.network_tier" "plans.4.plan_id_type" "plans.4.plan_id" "plans.4.network_tier" "plans.5.plan_id_type" "plans.5.plan_id" "plans.5.network_tier" "plans.6.plan_id_type"
## [100] "plans.6.plan_id" "plans.6.network_tier" "plans.7.plan_id_type" "plans.7.plan_id" "plans.7.network_tier" "plans.8.plan_id_type" "plans.8.plan_id" "plans.8.network_tier" "plans.9.plan_id_type"
## [109] "plans.9.plan_id" "plans.9.network_tier" "last_updated_on" "name.first" "name.middle" "name.last" "speciality.1" "speciality.2" "speciality.3"
## [118] "speciality.4" "accepting" "languages.1" "languages.2" "languages.3" "languages.4" "languages.5" "languages.6" "gender"
The resulting data.frame is quite wide, but we can use rowToFrame()
and npiToFrame()
to get a good vertical layout of one row at a time. For example, here's the first row:
rowToFrame(df[1L,]);
## column value
## 1 npi 1063645026
## 2 type FACILITY
## 3 facility_name EXPRESS SCRIPTS
## 4 facility_type.1 Pharmacies
## 5 facility_type.2 <NA>
## 6 facility_type.3 <NA>
## 7 addresses.1.address 4750 E 450 S
## 8 addresses.1.city WHITESTOWN
## 9 addresses.1.state IN
## 10 addresses.1.zip 46075
## 11 addresses.1.phone 2012695236
## 12 addresses.1.address_2 <NA>
## 13 addresses.2.address <NA>
## 14 addresses.2.city <NA>
## 15 addresses.2.state <NA>
## 16 addresses.2.zip <NA>
## 17 addresses.2.phone <NA>
## 18 addresses.2.address_2 <NA>
## 19 addresses.3.address <NA>
## 20 addresses.3.city <NA>
## 21 addresses.3.state <NA>
##
## ... snip ...
##
## 77 addresses.12.zip <NA>
## 78 addresses.12.phone <NA>
## 79 addresses.13.address <NA>
## 80 addresses.13.city <NA>
## 81 addresses.13.state <NA>
## 82 addresses.13.zip <NA>
## 83 addresses.13.phone <NA>
## 84 plans.1.plan_id_type HIOS-PLAN-ID
## 85 plans.1.plan_id 38344AK0620003
## 86 plans.1.network_tier HERITAGE-PLUS
## 87 plans.2.plan_id_type HIOS-PLAN-ID
## 88 plans.2.plan_id 38344AK0620004
## 89 plans.2.network_tier HERITAGE-PLUS
## 90 plans.3.plan_id_type HIOS-PLAN-ID
## 91 plans.3.plan_id 38344AK0620006
## 92 plans.3.network_tier HERITAGE-PLUS
## 93 plans.4.plan_id_type HIOS-PLAN-ID
## 94 plans.4.plan_id 38344AK0620008
## 95 plans.4.network_tier HERITAGE-PLUS
## 96 plans.5.plan_id_type HIOS-PLAN-ID
## 97 plans.5.plan_id 38344AK0570001
## 98 plans.5.network_tier HERITAGE-PLUS
## 99 plans.6.plan_id_type HIOS-PLAN-ID
## 100 plans.6.plan_id 38344AK0570002
## 101 plans.6.network_tier HERITAGE-PLUS
## 102 plans.7.plan_id_type HIOS-PLAN-ID
## 103 plans.7.plan_id 38344AK0980003
## 104 plans.7.network_tier HERITAGE-PLUS
## 105 plans.8.plan_id_type HIOS-PLAN-ID
## 106 plans.8.plan_id 38344AK0980006
## 107 plans.8.network_tier HERITAGE-PLUS
## 108 plans.9.plan_id_type HIOS-PLAN-ID
## 109 plans.9.plan_id 38344AK0980012
## 110 plans.9.network_tier HERITAGE-PLUS
## 111 last_updated_on 2015-10-14
## 112 name.first <NA>
## 113 name.middle <NA>
## 114 name.last <NA>
## 115 speciality.1 <NA>
## 116 speciality.2 <NA>
## 117 speciality.3 <NA>
## 118 speciality.4 <NA>
## 119 accepting <NA>
## 120 languages.1 <NA>
## 121 languages.2 <NA>
## 122 languages.3 <NA>
## 123 languages.4 <NA>
## 124 languages.5 <NA>
## 125 languages.6 <NA>
## 126 gender <NA>
I've tested the result pretty thoroughly by doing many spot-checks on individual records, and it all looks correct. Let me know if you have any questions.
jsonRList
Also can't find documentation for it online – Marvamarve