Intuitively, in a binary problem the weight vector points in the direction of the '1'-class, while the '0'-class is found when pointing away from the weight vector. The decision boundary should thus be drawn perpendicular to the weight vector.
See the image for a simplified example: You have a neural network with only 1 input which thus has 1 weight. If the weight is -1 (the blue vector), then all negative inputs will become positive, so the whole negative spectrum will be assigned to the '1'-class, while the positive spectrum will be the '0'-class. The decision boundary in a 2-axis plane is thus a vertical line through the origin (the red line). Simply said it is the line perpendicular to the weight vector.
Lets go through this example with a few values. The output of the perceptron is class 1 if the sum of all inputs * weights
is larger than 0 (the default threshold), otherwise if the output is smaller than the threshold of 0 then the class is 0. Your input has value 1. The weight applied to this single input is -1, so 1 * -1 = -1
which is less than 0. The input is thus assigned class 0 (NOTE: class 0 and class 1 could have just been called class A or class B, don't confuse them with the input and weight values). Conversely, if the input is -1, then input * weight
is -1 * -1 = 1
, which is larger than 0, so the input is assigned to class 1. If you try every input value then you will see that all the negative values in this example have an output larger than 0, so all of them belong to class 1. All positive values will have an output of smaller than 0 and therefore will be classified as class 0. Draw the line which separates all positive and negative input values (the red line) and you will see that this line is perpendicular to the weight vector.
Also note that the weight vector is only used to modify the inputs to fit the wanted output. What would happen without a weight vector? An input of 1, would result in an output of 1, which is larger than the threshold of 0, so the class is '1'.
The second image on this page shows a perceptron with 2 inputs and a bias. The first input has the same weight as my example, while the second input has a weight of 1. The corresponding weight vector together with the decision boundary are thus changed as seen in the image. Also the decision boundary has been translated to the right due to an added bias of 1.