Semantics
Rust implements what is known as an Affine Type System:
Affine types are a version of linear types imposing weaker constraints, corresponding to affine logic. An affine resource can be used at most once, while a linear one must be used exactly once.
Types that are not Copy
, and are thus moved, are Affine Types: you may use them either once or never, nothing else.
Rust qualifies this as a transfer of ownership in its Ownership-centric view of the world (*).
(*) Some of the people working on Rust are much more qualified than I am in CS, and they knowingly implemented an Affine Type System; however contrary to Haskell which exposes the math-y/cs-y concepts, Rust tends to expose more pragmatic concepts.
Note: it could be argued that Affine Types returned from a function tagged with #[must_use]
are actually Linear Types from my reading.
Implementation
It depends. Please keep in mind than Rust is a language built for speed, and there are numerous optimizations passes at play here which will depend on the compiler used (rustc + LLVM, in our case).
Within a function body (playground):
fn main() {
let s = "Hello, World!".to_string();
let t = s;
println!("{}", t);
}
If you check the LLVM IR (in Debug), you'll see:
%_5 = alloca %"alloc::string::String", align 8
%t = alloca %"alloc::string::String", align 8
%s = alloca %"alloc::string::String", align 8
%0 = bitcast %"alloc::string::String"* %s to i8*
%1 = bitcast %"alloc::string::String"* %_5 to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %1, i8* %0, i64 24, i32 8, i1 false)
%2 = bitcast %"alloc::string::String"* %_5 to i8*
%3 = bitcast %"alloc::string::String"* %t to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %2, i64 24, i32 8, i1 false)
Underneath the covers, rustc invokes a memcpy
from the result of "Hello, World!".to_string()
to s
and then to t
. While it might seem inefficient, checking the same IR in Release mode you will realize that LLVM has completely elided the copies (realizing that s
was unused).
The same situation occurs when calling a function: in theory you "move" the object into the function stack frame, however in practice if the object is large the rustc compiler might switch to passing a pointer instead.
Another situation is returning from a function, but even then the compiler might apply "return value optimization" and build directly in the caller's stack frame -- that is, the caller passes a pointer into which to write the return value, which is used without intermediary storage.
The ownership/borrowing constraints of Rust enable optimizations that are difficult to reach in C++ (which also has RVO but cannot apply it in as many cases).
So, the digest version:
- moving large objects is inefficient, but there are a number of optimizations at play that might elide the move altogether
- moving involves a
memcpy
of std::mem::size_of::<T>()
bytes, so moving a large String
is efficient because it only copies a couple bytes whatever the size of the allocated buffer they hold onto