A semaphore is suited cleanly to a producer-consumer model, although it has other uses. Your program logic is responsible for ensuring that the right number of posts are made for the number of waits. If you post a semaphore and nobody is waiting on it yet, then when they do wait they continue immediately. If your problem is such that it can be explained in terms of the count value of a semaphore, then it should be easy to solve with a semaphore.
A condition variable is a bit more forgiving in some respects. You can for example use cond_broadcast to wake up all waiters, without the producer knowing how many there are. And if you cond_signal a condvar with nobody waiting on it then nothing happens. This is good if you don't know whether there's going to be a listener interested. It is also why the listener should always check the state with the mutex held before waiting - if they don't then they can miss a signal and not wake up until the next one (which could be never).
So a condition variable is suitable for notifying interested parties that state has changed: you acquire the mutex, change the state, signal (or broadcast) the condvar and release the mutex. If this describes your problem you're in condvar territory. If different listeners are interested in different states you can just broadcast and they'll each in turn wake up, figure out whether they've found the state they want, and if not wait again.
It's very gnarly indeed to attempt this sort of thing with a mutex and a semaphore. The problem comes when you want to take the mutex, check some state, then wait on the semaphore for changes. Unless you can atomically release the mutex and wait on the semaphore (which in pthreads you can't), you end up waiting on the semaphore while holding the mutex. This blocks the mutex, meaning that others can't take it to make the change you care about. So you will be tempted to add another mutex in a way which depends on your specific requirements. And maybe another semaphore. The result is generally incorrect code with harmful race conditions.
Condition variables escape this problem, because calling cond_wait automatically releases the mutex, freeing it for use by others. The mutex is regained before cond_wait returns.
IIRC it is possible to implement a kind of condvar using only semaphores, but if the mutex you're implementing to go with the condvar is required to have trylock, then it's a serious head-scratcher, and timed waits are out. Not recommended. So don't assume that anything you can do with a condvar can be done with semaphores. Plus of course mutexes can have nice behaviours that semaphores lack, principally priority-inversion avoidance.
sem_wait
method will never return because no other thread can acquire the mutex and callsem_signal
. However, I won't what if I release mutex beforesem_wait
and require it again after waiting. I know these steps are not atomic, so what will happen? – Veronikaveronike