Suppose I have some count data that looks like this:
library(tidyr)
library(dplyr)
X.raw <- data.frame(
x = as.factor(c("A", "A", "A", "B", "B", "B")),
y = as.factor(c("i", "ii", "ii", "i", "i", "i")),
z = 1:6
)
X.raw
# x y z
# 1 A i 1
# 2 A ii 2
# 3 A ii 3
# 4 B i 4
# 5 B i 5
# 6 B i 6
I'd like to tidy and summarise like this:
X.tidy <- X.raw %>% group_by(x, y) %>% summarise(count = sum(z))
X.tidy
# Source: local data frame [3 x 3]
# Groups: x
#
# x y count
# 1 A i 1
# 2 A ii 5
# 3 B i 15
I know that for x=="B"
and y=="ii"
we have observed count of zero, rather than a missing value. i.e. the field worker was actually there, but because there wasn't a positive count no row was entered into the raw data. I can add the zero count explicitly by doing this:
X.fill <- X.tidy %>% spread(y, count, fill = 0) %>% gather(y, count, -x)
X.fill
# Source: local data frame [4 x 3]
#
# x y count
# 1 A i 1
# 2 B i 15
# 3 A ii 5
# 4 B ii 0
But that seems a little bit of a roundabout way of doing things. Is there a cleaner idiom for this?
Just to clarify: My code already does what I need it to do, using spread
then gather
, so what I'm interested in is finding a more direct route within tidyr
and dplyr
.
0
andNA
? – SpinsterNA
s. – Mame