I am currently working on a project, a simple sentiment analyzer such that there will be 2 and 3 classes in separate cases. I am using a corpus that is pretty rich in the means of unique words (around 200.000). I used bag-of-words method for feature selection and to reduce the number of unique features, an elimination is done due to a threshold value of frequency of occurrence. The final set of features includes around 20.000 features, which is actually a 90% decrease, but not enough for intended accuracy of test-prediction. I am using LibSVM and SVM-light in turn for training and prediction (both linear and RBF kernel) and also Python and Bash in general.
The highest accuracy observed so far is around 75% and I need at least 90%. This is the case for binary classification. For multi-class training, the accuracy falls to ~60%. I need at least 90% at both cases and can not figure how to increase it: via optimizing training parameters or via optimizing feature selection?
I have read articles about feature selection in text classification and what I found is that three different methods are used, which have actually a clear correlation among each other. These methods are as follows:
- Frequency approach of bag-of-words (BOW)
- Information Gain (IG)
- X^2 Statistic (CHI)
The first method is already the one I use, but I use it very simply and need guidance for a better use of it in order to obtain high enough accuracy. I am also lacking knowledge about practical implementations of IG and CHI and looking for any help to guide me in that way.
Thanks a lot, and if you need any additional info for help, just let me know.
@larsmans: Frequency Threshold: I am looking for the occurrences of unique words in examples, such that if a word is occurring in different examples frequently enough, it is included in the feature set as a unique feature.
@TheManWithNoName: First of all thanks for your effort in explaining the general concerns of document classification. I examined and experimented all the methods you bring forward and others. I found Proportional Difference (PD) method the best for feature selection, where features are uni-grams and Term Presence (TP) for the weighting (I didn't understand why you tagged Term-Frequency-Inverse-Document-Frequency (TF-IDF) as an indexing method, I rather consider it as a feature weighting approach). Pre-processing is also an important aspect for this task as you mentioned. I used certain types of string elimination for refining the data as well as morphological parsing and stemming. Also note that I am working on Turkish, which has different characteristics compared to English. Finally, I managed to reach ~88% accuracy (f-measure) for binary classification and ~84% for multi-class. These values are solid proofs of the success of the model I used. This is what I have done so far. Now working on clustering and reduction models, have tried LDA and LSI and moving on to moVMF and maybe spherical models (LDA + moVMF), which seems to work better on corpus those have objective nature, like news corpus. If you have any information and guidance on these issues, I will appreciate. I need info especially to setup an interface (python oriented, open-source) between feature space dimension reduction methods (LDA, LSI, moVMF etc.) and clustering methods (k-means, hierarchical etc.).