I am trying to create a LDA model on a JSON file.
Creating a spark context with the JSON file :
import org.apache.spark.sql.SparkSession
val sparkSession = SparkSession.builder
.master("local")
.appName("my-spark-app")
.config("spark.some.config.option", "config-value")
.getOrCreate()
val df = spark.read.json("dbfs:/mnt/JSON6/JSON/sampleDoc.txt")
Displaying the df
should show the DataFrame
display(df)
Tokenize the text
import org.apache.spark.ml.feature.RegexTokenizer
// Set params for RegexTokenizer
val tokenizer = new RegexTokenizer()
.setPattern("[\\W_]+")
.setMinTokenLength(4) // Filter away tokens with length < 4
.setInputCol("text")
.setOutputCol("tokens")
// Tokenize document
val tokenized_df = tokenizer.transform(df)
This should be displaying the tokenized_df
display(tokenized_df)
Get the stopwords
%sh wget http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words > -O /tmp/stopwords
Optional: copying the stopwords to the tmp folder
%fs cp file:/tmp/stopwords dbfs:/tmp/stopwords
Collecting all the stopwords
val stopwords = sc.textFile("/tmp/stopwords").collect()
Filtering out the stopwords
import org.apache.spark.ml.feature.StopWordsRemover
// Set params for StopWordsRemover
val remover = new StopWordsRemover()
.setStopWords(stopwords) // This parameter is optional
.setInputCol("tokens")
.setOutputCol("filtered")
// Create new DF with Stopwords removed
val filtered_df = remover.transform(tokenized_df)
Displaying the filtered df
should verify the stopwords
got removed
display(filtered_df)
Vectorizing the frequency of occurrence of words
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.ml.feature.CountVectorizer
// Set params for CountVectorizer
val vectorizer = new CountVectorizer()
.setInputCol("filtered")
.setOutputCol("features")
.fit(filtered_df)
Verify the vectorizer
vectorizer.transform(filtered_df)
.select("id", "text","features","filtered").show()
After this I am seeing an issue in fitting this vectorizer
in LDA. The issue which I believe is CountVectorizer
is giving sparse vector but LDA requires dense vector. Still trying to figure out the issue.
Here is the exception where map is not able to convert.
import org.apache.spark.mllib.linalg.Vector
val ldaDF = countVectors.map {
case Row(id: String, countVector: Vector) => (id, countVector)
}
display(ldaDF)
Exception :
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 4083.0 failed 4 times, most recent failure: Lost task 0.3 in stage 4083.0 (TID 15331, 10.209.240.17): scala.MatchError: [0,(1252,[13,17,18,20,30,37,45,50,51,53,63,64,96,101,108,125,174,189,214,221,224,227,238,268,291,309,328,357,362,437,441,455,492,493,511,528,561,613,619,674,764,823,839,980,1098,1143],[1.0,1.0,2.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,3.0,1.0,2.0,1.0,5.0,1.0,2.0,2.0,1.0,4.0,1.0,2.0,3.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,2.0,1.0,1.0,1.0])] (of class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema)
There is a working sample for LDA which is not throwing any issue
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.clustering.{DistributedLDAModel, LDA}
val a = Vectors.dense(Array(1.0,2.0,3.0))
val b = Vectors.dense(Array(3.0,4.0,5.0))
val df = Seq((1L,a),(2L,b),(2L,a)).toDF
val ldaDF = df.map { case Row(id: Long, countVector: Vector) => (id, countVector) }
val model = new LDA().setK(3).run(ldaDF.javaRDD)
display(df)
The only difference is in the second snippet we are having a dense matrix.
Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(VecFunction)' due to data type mismatch: argument 1 requires vector type, however, 'VecFunction' is of vector type.;
Note how both argument and expected input are said to be vector type. – Cristoforo