How to implement a binary search tree in Python?
Asked Answered
A

18

53

This is what I've got so far but it is not working:

class Node:
    rChild,lChild,data = None,None,None

    def __init__(self,key):
        self.rChild = None
        self.lChild = None
        self.data = key

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0

    def insert(self,node,someNumber):
        if node is None:
            node = Node(someNumber)
        else:
            if node.data > someNumber:
                self.insert(node.rchild,someNumber)
            else:
                self.insert(node.rchild, someNumber)
        return

def main():
    t = Tree()
    t.root = Node(4)
    t.root.rchild = Node(5)
    print t.root.data #this works
    print t.root.rchild.data #this works too
    t = Tree()
    t.insert(t.root,4)
    t.insert(t.root,5)
    print t.root.data #this fails
    print t.root.rchild.data #this fails too

if __name__ == '__main__':
     main()
Anemophilous answered 26/3, 2011 at 18:37 Comment(7)
paste the error messages too.Curule
slightly off topic, but usually the data is the value, the key is what is usually used to look up that value.Leanneleanor
@Rohit What I am interested in knowing is not an implementation, but why my code is not working. But your code is not working because your implementation is not correct. Not much sense with search in your main. As a kind suggestion, perhaps just write first a simple tree creation and then some pre- and post-order traversals of it. ThanksGripe
@Lennart, @N 1.1 - Pardon me. The problem is with inserting in a BST. If you look at the main, the first 5 lines work as expected, but not the next 5 lines. @kriegar - Thank you for mentioning that :) @Gripe - I think I found my mistake. Thanks for pointing this out.Anemophilous
@Rohit I'd like to point out that the statements for if and else in the insert method are the same, if you decide to modify rather than rewrite your code make sure you give that a look.Leanneleanor
existing balanced bst implementations: #1110304Saunder
You have rchild twice in your insert methd. it shall be lchild and rchild in the nested if else of the outer else condition.Calfee
L
96

Here is a quick example of a binary insert:

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val

def binary_insert(root, node):
    if root is None:
        root = node
    else:
        if root.data > node.data:
            if root.l_child is None:
                root.l_child = node
            else:
                binary_insert(root.l_child, node)
        else:
            if root.r_child is None:
                root.r_child = node
            else:
                binary_insert(root.r_child, node)

def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print root.data
    in_order_print(root.r_child)

def pre_order_print(root):
    if not root:
        return        
    print root.data
    pre_order_print(root.l_child)
    pre_order_print(root.r_child)    

r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

     3
    / \
   1   7
      /
     5

print "in order:"
in_order_print(r)

print "pre order"
pre_order_print(r)

in order:
1
3
5
7
pre order
3
1
7
5
Leanneleanor answered 26/3, 2011 at 19:35 Comment(7)
Really appreciate this. Thank you. Apparently, by the time I see this, I was able to implement my own version. Albeit your version do have fewer lines of code (mine contains some redundancy)Anemophilous
If root.data == node.data, shouldn't it do something better than inserting a duplicate? He's already implementing a unbalanced tree; stuffing duplicate nodes into it won't help the performance.Bunnie
no need for root.l_child == None and root.r_child == None checks. binary_insert calls will take care of it.Selfliquidating
@Selfliquidating nope it won't: if you remove the checks this code won't append any new node to the tree. The useless part is rather if root is None: root = None. Another problem with this code is that it allows duplicates. This can be fixed changing the else to elif root.data < node.data.Cholla
@Cholla If the if root... is removed how will you add first node to tree? When using a wrapper class for BST this check will ensure insertion on empty treeSaphena
This implementation neglects to set a parent attribute for each Node, without which one cannot implement the successor method for finding the next node in the in-order walk in O (h) time (where h is the height of the tree) as opposed to O (n) time for in-order walk. See my answer below for such a BST with these features.Bonsai
How can I get the above Diagramatic output? 3 / \ 1 7 / 5Lutetium
C
15
class Node: 
    rChild,lChild,data = None,None,None

This is wrong - it makes your variables class variables - that is, every instance of Node uses the same values (changing rChild of any node changes it for all nodes!). This is clearly not what you want; try

class Node: 
    def __init__(self, key):
        self.rChild = None
        self.lChild = None
        self.data = key

now each node has its own set of variables. The same applies to your definition of Tree,

class Tree:
    root,size = None,0    # <- lose this line!
    def __init__(self):
        self.root = None
        self.size = 0

Further, each class should be a "new-style" class derived from the "object" class and should chain back to object.__init__():

class Node(object): 
    def __init__(self, data, rChild=None, lChild=None):
        super(Node,self).__init__()
        self.data   = data
        self.rChild = rChild
        self.lChild = lChild

class Tree(object):
    def __init__(self):
        super(Tree,self).__init__()
        self.root = None
        self.size = 0

Also, main() is indented too far - as shown, it is a method of Tree which is uncallable because it does not accept a self argument.

Also, you are modifying the object's data directly (t.root = Node(4)) which kind of destroys encapsulation (the whole point of having classes in the first place); you should be doing something more like

def main():
    t = Tree()
    t.add(4)    # <- let the tree create a data Node and insert it
    t.add(5)
Carious answered 26/3, 2011 at 19:1 Comment(7)
-1 """changing rChild of any node changes it for all nodes!""" is nonsense. It causes a instance attribute to be created. See my edited answer.Bunnie
@John Machin: thank you for pointing that out; self.xyz will refer to an instance variable even if Node.xyz already exists. Regardless, having unused class variables with the same name as instance variables is unnecessary and confusing and better not done.Carious
@John Machin: the skies will fall, the seas will burn, and you might develop a sense of tact. In this case, omitting super() will do very little; however should someone down the line develop a sub-sub-class multiply derived from Tree it will cause them headaches. Better to do it right from the beginning.Carious
@Hugh Bothwell: I think you had better explain "develop a sub-sub-class multiply derived from Tree" to the OP and why he'd want to do that and what the extra headaches would be if he hadn't sprayed your super shibboleth all over his code right from the start.Bunnie
@Hugh Bothwell - I've presented my code version below. I've included the lines that you asked me to omit. But apparently, the code seems to work. Still thanks for sharing this. Its always good to follow best practices - learnt something new today.Anemophilous
@Rohit: The lines that Hugh asked you to omit are a waste of space; their effect is overridden by the __init__() call.Bunnie
@Rohit: if you do not wish to take good advice, I cannot make you.Carious
A
7
class Node:
    rChild,lChild,parent,data = None,None,None,0    

def __init__(self,key):
    self.rChild = None
    self.lChild = None
    self.parent = None
    self.data = key 

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0
    def insert(self,someNumber):
        self.size = self.size+1
        if self.root is None:
            self.root = Node(someNumber)
        else:
            self.insertWithNode(self.root, someNumber)    

    def insertWithNode(self,node,someNumber):
        if node.lChild is None and node.rChild is None:#external node
            if someNumber > node.data:
                newNode = Node(someNumber)
                node.rChild = newNode
                newNode.parent = node
            else:
                newNode = Node(someNumber)
                node.lChild = newNode
                newNode.parent = node
        else: #not external
            if someNumber > node.data:
                if node.rChild is not None:
                    self.insertWithNode(node.rChild, someNumber)
                else: #if empty node
                    newNode = Node(someNumber)
                    node.rChild = newNode
                    newNode.parent = node 
            else:
                if node.lChild is not None:
                    self.insertWithNode(node.lChild, someNumber)
                else:
                    newNode = Node(someNumber)
                    node.lChild = newNode
                    newNode.parent = node                    

    def printTree(self,someNode):
        if someNode is None:
            pass
        else:
            self.printTree(someNode.lChild)
            print someNode.data
            self.printTree(someNode.rChild)

def main():  
    t = Tree()
    t.insert(5)  
    t.insert(3)
    t.insert(7)
    t.insert(4)
    t.insert(2)
    t.insert(1)
    t.insert(6)
    t.printTree(t.root)

if __name__ == '__main__':
    main()

My solution.

Anemophilous answered 26/3, 2011 at 20:6 Comment(0)
D
7
class BST:
    def __init__(self, val=None):
        self.left = None
        self.right = None
        self.val = val

    def __str__(self):
        return "[%s, %s, %s]" % (self.left, str(self.val), self.right)

    def isEmpty(self):
        return self.left == self.right == self.val == None

    def insert(self, val):
        if self.isEmpty():
            self.val = val
        elif val < self.val:
            if self.left is None:
                self.left = BST(val)
            else:
                self.left.insert(val)
        else:
            if self.right is None:
                self.right = BST(val)
            else:
                self.right.insert(val)

a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
Dimmer answered 15/8, 2012 at 2:31 Comment(1)
I find the print easier to read with __str__() returning: "%s: [%s, %s]" % (str(self.val), self.left, self.right)Ensiform
B
5

The Op's Tree.insert method qualifies for the "Gross Misnomer of the Week" award -- it doesn't insert anything. It creates a node which is not attached to any other node (not that there are any nodes to attach it to) and then the created node is trashed when the method returns.

For the edification of @Hugh Bothwell:

>>> class Foo(object):
...    bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
Bunnie answered 26/3, 2011 at 18:50 Comment(3)
@Rohit: Did this answer enabled you to (totally) solve your problem? Care to share now your working bst implementation. ThanksGripe
@Gripe - The code fragment presented by @John Machin did not help me. But he was correct about the fact that my code was not attaching any node. Working it with pen and paper helped me with that. I have attached my implementation at the end.Anemophilous
@Rohit: I presented no "code fragment" for you. The edit was directed at @Hugh Bothwell, as I indicated.Bunnie
B
5

The accepted answer neglects to set a parent attribute for each node inserted, without which one cannot implement a successor method which finds the successor in an in-order tree walk in O(h) time, where h is the height of the tree (as opposed to the O(n) time needed for the walk).

Here is an implementation based on the pseudocode given in Cormen et al., Introduction to Algorithms, including assignment of a parent attribute and a successor method:

class Node(object):
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.parent = None


class Tree(object):
    def __init__(self, root=None):
        self.root = root

    def insert(self, z):
        y = None
        x = self.root
        while x is not None:
            y = x
            if z.key < x.key:
                x = x.left
            else:
                x = x.right
        z.parent = y
        if y is None:
            self.root = z       # Tree was empty
        elif z.key < y.key:
            y.left = z
        else:
            y.right = z

    @staticmethod
    def minimum(x):
        while x.left is not None:
            x = x.left
        return x

    @staticmethod
    def successor(x):
        if x.right is not None:
            return Tree.minimum(x.right)
        y = x.parent
        while y is not None and x == y.right:
            x = y
            y = y.parent
        return y

Here are some tests to show that the tree behaves as expected for the example given by DTing:

import pytest

@pytest.fixture
def tree():
    t = Tree()
    t.insert(Node(3))
    t.insert(Node(1))
    t.insert(Node(7))
    t.insert(Node(5))
    return t

def test_tree_insert(tree):
    assert tree.root.key == 3
    assert tree.root.left.key == 1
    assert tree.root.right.key == 7
    assert tree.root.right.left.key == 5

def test_tree_successor(tree):
    assert Tree.successor(tree.root.left).key == 3
    assert Tree.successor(tree.root.right.left).key == 7

if __name__ == "__main__":
    pytest.main([__file__])
Bonsai answered 25/8, 2017 at 10:42 Comment(1)
Thanks - would be nice to have more meaningful variable names than x y z to more easily understand the code. Guess that's homework for us :)Moise
G
2

Just something to help you to start on.

A (simple idea of) binary tree search would be quite likely be implement in python according the lines:

def search(node, key):
    if node is None: return None  # key not found
    if key< node.key: return search(node.left, key)
    elif key> node.key: return search(node.right, key)
    else: return node.value  # found key

Now you just need to implement the scaffolding (tree creation and value inserts) and you are done.

Gripe answered 26/3, 2011 at 19:12 Comment(1)
Thnx for posting this. But this is not what I was looking for. My problem was with insert, which I have corrected now (my solution given below). The problem was more to do with my understanding of python classes.Anemophilous
H
2

I find the solutions a bit clumsy on the insert part. You could return the root reference and simplify it a bit:

def binary_insert(root, node):
    if root is None:
        return node
    if root.data > node.data:
        root.l_child = binary_insert(root.l_child, node)
    else:
        root.r_child = binary_insert(root.r_child, node)
    return root
Humankind answered 23/9, 2014 at 23:9 Comment(0)
H
2

its easy to implement a BST using two classes, 1. Node and 2. Tree Tree class will be just for user interface, and actual methods will be implemented in Node class.

class Node():

    def __init__(self,val):
        self.value = val
        self.left = None
        self.right = None


    def _insert(self,data):
        if data == self.value:
            return False
        elif data < self.value:
            if self.left:
                return self.left._insert(data)
            else:
                self.left = Node(data)
                return True
        else:
            if self.right:
                return self.right._insert(data)
            else:
                self.right = Node(data)
                return True

    def _inorder(self):
        if self:
            if self.left:
                self.left._inorder()
            print(self.value)
            if self.right:
                self.right._inorder()



class Tree():

    def __init__(self):
        self.root = None

    def insert(self,data):
        if self.root:
            return self.root._insert(data)
        else:
            self.root = Node(data)
            return True
    def inorder(self):
        if self.root is not None:
            return self.root._inorder()
        else:
            return False




if __name__=="__main__":
    a = Tree()
    a.insert(16)
    a.insert(8)
    a.insert(24)
    a.insert(6)
    a.insert(12)
    a.insert(19)
    a.insert(29)
    a.inorder()

Inorder function for checking whether BST is properly implemented.

Hophead answered 6/7, 2017 at 8:37 Comment(0)
U
1

Another Python BST with sort key (defaulting to value)

LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1

class BinarySearchTree(object):

    def __init__(self, sort_key=None):
        self._root = []  
        self._sort_key = sort_key
        self._len = 0  

def insert(self, val):
    if self._sort_key is None:
        sort_key = val // if no sort key, sort key is value
    else:
        sort_key = self._sort_key(val)

    node = self._root
    while node:
        if sort_key < node[_SORT_KEY]:
            node = node[LEFT]
        else:
            node = node[RIGHT]

    if sort_key is val:
        node[:] = [[], [], val]
    else:
        node[:] = [[], [], val, sort_key]
    self._len += 1

def minimum(self):
    return self._extreme_node(LEFT)[VALUE]

def maximum(self):
    return self._extreme_node(RIGHT)[VALUE]

def find(self, sort_key):
    return self._find(sort_key)[VALUE]

def _extreme_node(self, side):
    if not self._root:
        raise IndexError('Empty')
    node = self._root
    while node[side]:
        node = node[side]
    return node

def _find(self, sort_key):
    node = self._root
    while node:
        node_key = node[SORT_KEY]
        if sort_key < node_key:
            node = node[LEFT]
        elif sort_key > node_key:
            node = node[RIGHT]
        else:
            return node
    raise KeyError("%r not found" % sort_key)
Unstressed answered 29/4, 2013 at 10:25 Comment(0)
A
1

Here is a compact, object oriented, recursive implementation:

    class BTreeNode(object):
        def __init__(self, data):
            self.data = data
            self.rChild = None
            self.lChild = None

    def __str__(self):
        return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')

    def insert(self, btreeNode):
        if self.data > btreeNode.data: #insert left
            if self.lChild == None:
                self.lChild = btreeNode
            else:
                self.lChild.insert(btreeNode)
        else: #insert right
            if self.rChild == None:
                self.rChild = btreeNode
            else:
                self.rChild.insert(btreeNode)


def main():
    btreeRoot = BTreeNode(5)
    print 'inserted %s:' %5, btreeRoot

    btreeRoot.insert(BTreeNode(7))
    print 'inserted %s:' %7, btreeRoot

    btreeRoot.insert(BTreeNode(3))
    print 'inserted %s:' %3, btreeRoot

    btreeRoot.insert(BTreeNode(1))
    print 'inserted %s:' %1, btreeRoot

    btreeRoot.insert(BTreeNode(2))
    print 'inserted %s:' %2, btreeRoot

    btreeRoot.insert(BTreeNode(4))
    print 'inserted %s:' %4, btreeRoot

    btreeRoot.insert(BTreeNode(6))
    print 'inserted %s:' %6, btreeRoot

The output of the above main() is:

inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
Aeromedical answered 4/9, 2013 at 2:33 Comment(0)
H
1

Here is a working solution.

class BST:
    def __init__(self,data):
        self.root = data
        self.left = None
        self.right = None

    def insert(self,data):
        if self.root == None:
            self.root = BST(data)
        elif data > self.root:
            if self.right == None:
                self.right = BST(data)
            else:
                self.right.insert(data)
        elif data < self.root:
            if self.left == None:
                self.left = BST(data)
            else:
                self.left.insert(data)

    def inordertraversal(self):
        if self.left != None:
            self.left.inordertraversal()
        print (self.root),
        if self.right != None:
            self.right.inordertraversal()

t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
Hayse answered 24/4, 2017 at 19:22 Comment(0)
R
1

A simple, recursive method with only 1 function and using an array of values:

class TreeNode(object):

    def __init__(self, value: int, left=None, right=None):
        super().__init__()
        self.value = value
        self.left = left
        self.right = right

    def __str__(self):
        return str(self.value)


def create_node(values, lower, upper) -> TreeNode:
    if lower > upper:
        return None

    index = (lower + upper) // 2

    value = values[index]
    node = TreeNode(value=value)
    node.left = create_node(values, lower, index - 1)
    node.right = create_node(values, index + 1, upper)

    return node


def print_bst(node: TreeNode):
    if node:
        # Simple pre-order traversal when printing the tree
        print("node: {}".format(node))
        print_bst(node.left)
        print_bst(node.right)



if __name__ == '__main__':
    vals = [0, 1, 2, 3, 4, 5, 6]
    bst = create_node(vals, lower=0, upper=len(vals) - 1)
    print_bst(bst)

As you can see, we really only need 1 method, which is recursive: create_node. We pass in the full values array in each create_node method call, however, we update the lower and upper index values every time that we make the recursive call.

Then, using the lower and upper index values, we calculate the index value of the current node and capture it in value. This value is the value for the current node, which we use to create a node.

From there, we set the values of left and right by recursively calling the function, until we reach the end state of the recursion call when lower is greater than upper.

Important: we update the value of upper when creating the left side of the tree. Conversely, we update the value of lower when creating the right side of the tree.

Hopefully this helps!

Regnant answered 8/6, 2020 at 18:11 Comment(1)
Thanks for this solution. Just one quick question: For implementation of your solution, the initial array of vals should always be sorted?Logue
B
0

The following code is basic on @DTing‘s answer and what I learn from class, which uses a while loop to insert (indicated in the code).

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val


def binary_insert(root, node):
    y = None
    x = root
    z = node
    #while loop here
    while x is not None:
        y = x
        if z.data < x.data:
            x = x.l_child
        else:
            x = x.r_child
    z.parent = y
    if y == None:
        root = z
    elif z.data < y.data:
        y.l_child = z
    else:
        y.r_child = z


def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print(root.data)
    in_order_print(root.r_child)


r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

in_order_print(r)
Breechloader answered 8/4, 2016 at 10:19 Comment(0)
F
0

The problem, or at least one problem with your code is here:-

def insert(self,node,someNumber):
    if node is None:
        node = Node(someNumber)
    else:
        if node.data > someNumber:
            self.insert(node.rchild,someNumber)
        else:
            self.insert(node.rchild, someNumber)
    return

You see the statement "if node.data > someNumber:" and the associated "else:" statement both have the same code after them. i.e you do the same thing whether the if statement is true or false.

I'd suggest you probably intended to do different things here, perhaps one of these should say self.insert(node.lchild, someNumber) ?

Florescence answered 26/11, 2018 at 16:21 Comment(0)
D
0

Another Python BST solution

class Node(object):
    def __init__(self, value):
        self.left_node = None
        self.right_node = None
        self.value = value

    def __str__(self):
        return "[%s, %s, %s]" % (self.left_node, self.value, self.right_node)

    def insertValue(self, new_value):
        """
        1. if current Node doesnt have value then assign to self
        2. new_value lower than current Node's value then go left
        2. new_value greater than current Node's value then go right
        :return:
        """
        if self.value:
            if new_value < self.value:
                # add to left
                if self.left_node is None:  # reached start add value to start
                    self.left_node = Node(new_value)
                else:
                    self.left_node.insertValue(new_value)  # search
            elif new_value > self.value:
                # add to right
                if self.right_node is None:  # reached end add value to end
                    self.right_node = Node(new_value)
                else:
                    self.right_node.insertValue(new_value)  # search
        else:
            self.value = new_value

    def findValue(self, value_to_find):
        """
        1. value_to_find is equal to current Node's value then found
        2. if value_to_find is lower than Node's value then go to left
        3. if value_to_find is greater than Node's value then go to right
        """
        if value_to_find == self.value:
            return "Found"
        elif value_to_find < self.value and self.left_node:
            return self.left_node.findValue(value_to_find)
        elif value_to_find > self.value and self.right_node:
            return self.right_node.findValue(value_to_find)
        return "Not Found"

    def printTree(self):
        """
        Nodes will be in sequence
        1. Print LHS items
        2. Print value of node
        3. Print RHS items
        """
        if self.left_node:
            self.left_node.printTree()
        print(self.value),
        if self.right_node:
            self.right_node.printTree()

    def isEmpty(self):
        return self.left_node == self.right_node == self.value == None


def main():
    root_node = Node(12)
    root_node.insertValue(6)
    root_node.insertValue(3)
    root_node.insertValue(7)

    # should return 3 6 7 12
    root_node.printTree()

    # should return found
    root_node.findValue(7)
    # should return found
    root_node.findValue(3)
    # should return Not found
    root_node.findValue(24)

if __name__ == '__main__':
    main()
Duffer answered 14/4, 2019 at 15:7 Comment(0)
B
0
    def BinaryST(list1,key):
    start = 0
    end = len(list1)
    print("Length of List: ",end)

    for i in range(end):
        for j in range(0, end-i-1):
            if(list1[j] > list1[j+1]):
                temp = list1[j]
                list1[j] = list1[j+1]
                list1[j+1] = temp

    print("Order List: ",list1)

    mid = int((start+end)/2)
    print("Mid Index: ",mid)

    if(key == list1[mid]):
        print(key," is on ",mid," Index")

    elif(key > list1[mid]):
        for rindex in range(mid+1,end):
            if(key == list1[rindex]):
                print(key," is on ",rindex," Index")
                break
            elif(rindex == end-1):
                print("Given key: ",key," is not in List")
                break
            else:
                continue

    elif(key < list1[mid]):
        for lindex in range(0,mid):
            if(key == list1[lindex]):
                print(key," is on ",lindex," Index")
                break
            elif(lindex == mid-1):
                print("Given key: ",key," is not in List")
                break
            else:
                continue


size = int(input("Enter Size of List: "))
list1 = []
for e in range(size):
    ele = int(input("Enter Element in List: "))
    list1.append(ele)

key = int(input("\nEnter Key for Search: "))

print("\nUnorder List: ",list1)
BinaryST(list1,key)
Boykins answered 2/1, 2020 at 14:20 Comment(0)
D
0
class TreeNode:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None


class BinaryTree:
    def __init__(self, root=None):
        self.root = root

    def add_node(self, node, value):
        """
        Node points to the left of value if node > value; right otherwise,
        BST cannot have duplicate values
        """
        if node is not None:
            if value < node.value:
                if node.left is None:
                    node.left = TreeNode(value)
                else:
                    self.add_node(node.left, value)
            else:
                if node.right is None:
                    node.right = TreeNode(value)
                else:
                    self.add_node(node.right, value)
        else:
            self.root = TreeNode(value)

    def search(self, value):
        """
        Value will be to the left of node if node > value; right otherwise.
        """
        node = self.root
        while node is not None:
            if node.value == value:
                return True     # node.value
            if node.value > value:
                node = node.left
            else:
                node = node.right
        return False

    def traverse_inorder(self, node):
        """
        Traverse the left subtree of a node as much as possible, then traverse
        the right subtree, followed by the parent/root node.
        """
        if node is not None:
            self.traverse_inorder(node.left)
            print(node.value)
            self.traverse_inorder(node.right)


def main():
    binary_tree = BinaryTree()
    binary_tree.add_node(binary_tree.root, 200)
    binary_tree.add_node(binary_tree.root, 300)
    binary_tree.add_node(binary_tree.root, 100)
    binary_tree.add_node(binary_tree.root, 30)
    binary_tree.traverse_inorder(binary_tree.root)
    print(binary_tree.search(200))


if __name__ == '__main__':
    main()
Deanadeanda answered 16/2, 2020 at 20:53 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.