LogLog and HyperLogLog algorithms for counting of large cardinalities
Asked Answered
H

6

59

Where can I find a valid implementation of LogLog algorithm? Have tried to implement it by myself but my draft implementation yields strange results.

Here it is:

function LogLog(max_error, max_count)
{
    function log2(x)
    {
         return Math.log(x) / Math.LN2;
    }

    var m = 1.30 / max_error;
    var k = Math.ceil(log2(m * m));
    m = Math.pow(2, k);

    var k_comp = 32 - k;

    var l = log2(log2(max_count / m));
    if (isNaN(l)) l = 1; else l = Math.ceil(l);
    var l_mask = ((1 << l) - 1) >>> 0;

    var M = [];
    for (var i = 0; i < m; ++i) M[i] = 0;

    function count(hash)
    {
          if (hash !== undefined)
          {
                var j = hash >>> k_comp;

                var rank = 0;
                for (var i = 0; i < k_comp; ++i)
                {
                     if ((hash >>> i) & 1)
                     {
                          rank = i + 1;
                          break;
                     }
                }

                M[j] = Math.max(M[j], rank & l_mask);
          }
          else
          {
                var c = 0;
                for (var i = 0; i < m; ++i) c += M[i];
                return 0.79402 * m * Math.pow(2, c / m);
          }
    }

    return {count: count};
}

function fnv1a(text)
{
     var hash = 2166136261;
     for (var i = 0; i < text.length; ++i)
     {
          hash ^= text.charCodeAt(i);
          hash += (hash << 1) + (hash << 4) + (hash << 7) +
            (hash << 8) + (hash << 24);
     }
    return hash >>> 0;
}

var words = ['aardvark', 'abyssinian', ... ,'zoology']; // about 2 300 words

var log_log = LogLog(0.01, 100000);
for (var i = 0; i < words.length; ++i) log_log.count(fnv1a(words[i]));
alert(log_log.count());

For unknown reason implementation is very sensitive to max_error parameter, it is the main factor that determines the magnitude of the result. I'm sure, there is some stupid mistake :)

UPDATE: This problem is solved in the newer version of algorithm. I will post its implementation later.

Hermia answered 13/5, 2011 at 10:40 Comment(7)
FWIW - I think you'll have better luck emailing the paper's authors.Cinquecento
@spinning_plate, one of the authors died about a month ago, email address of the other one is not functional.Hermia
It would help if you post what you've tried so far and explain your results.Louls
You might prefer to implement HyperLogLog, a newer algorithm by the same authors. You can find the paper at algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdfKittrell
@Carl Staelin, thanks! "Small range correction" mentioned in this paper do the trick.Hermia
@actual, did you figure out what the problem was? Why were the results so sensitive to the max_error parameter?Dualism
@mitchus, as I understand, original paper was aiming to count items of really large sets, with small sets it gives huge errors. In the newer paper algorithm was changed a little to fix some problems including this one. I will post updated version as soon as I finish the article about this neat algorithm, most likely next week.Hermia
H
18

Here it is the updated version of the algorithm based on the newer paper:

var pow_2_32 = 0xFFFFFFFF + 1;

function HyperLogLog(std_error)
{
     function log2(x)
     {
          return Math.log(x) / Math.LN2;
     }

     function rank(hash, max)
     {
          var r = 1;
          while ((hash & 1) == 0 && r <= max) { ++r; hash >>>= 1; }
          return r;
     }

     var m = 1.04 / std_error;
     var k = Math.ceil(log2(m * m)), k_comp = 32 - k;
     m = Math.pow(2, k);

     var alpha_m = m == 16 ? 0.673
          : m == 32 ? 0.697
          : m == 64 ? 0.709
          : 0.7213 / (1 + 1.079 / m);

     var M = []; for (var i = 0; i < m; ++i) M[i] = 0;

     function count(hash)
     {
          if (hash !== undefined)
          {
                var j = hash >>> k_comp;
                M[j] = Math.max(M[j], rank(hash, k_comp));
          }
          else
          {
                var c = 0.0;
                for (var i = 0; i < m; ++i) c += 1 / Math.pow(2, M[i]);
                var E = alpha_m * m * m / c;

                // -- make corrections

                if (E <= 5/2 * m)
                {
                     var V = 0;
                     for (var i = 0; i < m; ++i) if (M[i] == 0) ++V;
                     if (V > 0) E = m * Math.log(m / V);
                }
                else if (E > 1/30 * pow_2_32)
                     E = -pow_2_32 * Math.log(1 - E / pow_2_32);

                // --

                return E;
          }
    }

    return {count: count};
}

function fnv1a(text)
{
     var hash = 2166136261;
     for (var i = 0; i < text.length; ++i)
     {
          hash ^= text.charCodeAt(i);
          hash += (hash << 1) + (hash << 4) + (hash << 7) +
            (hash << 8) + (hash << 24);
     }
     return hash >>> 0;
}

var words = ['aardvark', 'abyssinian', ..., 'zoology']; // 2336 words

var seed = Math.floor(Math.random() * pow_2_32); // make more fun

var log_log = HyperLogLog(0.065);
for (var i = 0; i < words.length; ++i) log_log.count(fnv1a(words[i]) ^ seed);
var count = log_log.count();
alert(count + ', error ' +
    (count - words.length) / (words.length / 100.0) + '%');
Hermia answered 24/5, 2011 at 7:44 Comment(2)
+1 for using fnv1a -- I tried with sha1 and md5 (as it was easier to use them in PHP) and got very bad results as apparently this cryptographic functions do not have good distribution of LSB.Bearish
the fnv1a hash algorithm doesn't do so well for lower values of m, if you have input ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10'] I've seen a cardinality estimate of 3 due hash collisions on the buckets. Have seen much better results using murmurhash3 insteadConference
A
4

Here is a slightly modified version which adds the merge operation.

Merge allows you to take the counters from several instances of HyperLogLog, and determine the unique counters overall.

For example, if you have unique visitors collected on Monday, Tuesday and Wednesday, then you can merge the buckets together and count the number of unique visitors over the three day span:

var pow_2_32 = 0xFFFFFFFF + 1; 
function HyperLogLog(std_error)
{
    function log2(x)
    {
        return Math.log(x) / Math.LN2;
    }

    function rank(hash, max)
    {
        var r = 1;
        while ((hash & 1) == 0 && r <= max) { ++r; hash >>>= 1; }
        return r;
    }

    var m = 1.04 / std_error;
    var k = Math.ceil(log2(m * m)), k_comp = 32 - k;
    m = Math.pow(2, k);

    var alpha_m = m == 16 ? 0.673
         : m == 32 ? 0.697
         : m == 64 ? 0.709
         : 0.7213 / (1 + 1.079 / m);

    var M = []; for (var i = 0; i < m; ++i) M[i] = 0;

    function merge(other)
    {
        for (var i = 0; i < m; i++)
        M[i] = Math.max(M[i], other.buckets[i]);
    }

    function count(hash)
    {
        if (hash !== undefined)
        {
            var j = hash >>> k_comp;
            M[j] = Math.max(M[j], rank(hash, k_comp));
        }
        else
        {
            var c = 0.0;
            for (var i = 0; i < m; ++i) c += 1 / Math.pow(2, M[i]);
            var E = alpha_m * m * m / c;

            // -- make corrections

            if (E <= 5/2 * m)
            {
                 var V = 0;
                 for (var i = 0; i < m; ++i) if (M[i] == 0) ++V;
                 if (V > 0) E = m * Math.log(m / V);
            }
            else if (E > 1/30 * pow_2_32)
                 E = -pow_2_32 * Math.log(1 - E / pow_2_32);

            // --

            return E;
        }
    }

    return {count: count, merge: merge, buckets: M};
}

function fnv1a(text)
{
    var hash = 2166136261;
    for (var i = 0; i < text.length; ++i)
    {
        hash ^= text.charCodeAt(i);
        hash += (hash << 1) + (hash << 4) + (hash << 7) +
          (hash << 8) + (hash << 24);
    }
    return hash >>> 0;
}

Then you can do something like this:

// initialize one counter per day
var ll_monday = HyperLogLog(0.01);
var ll_tuesday = HyperLogLog(0.01);
var ll_wednesday = HyperLogLog(0.01);


// add 5000 unique values in each day
for(var i=0; i<5000; i++) ll_monday.count(fnv1a('' + Math.random()));
for(var i=0; i<5000; i++) ll_tuesday.count(fnv1a('' + Math.random()));
for(var i=0; i<5000; i++) ll_wednesday.count(fnv1a('' + Math.random()));

// add 5000 values which appear every day
for(var i=0; i<5000; i++) {ll_monday.count(fnv1a(''+i)); ll_tuesday.count(fnv1a('' + i));   ll_wednesday.count(fnv1a('' + i));}


// merge three days together
together = HyperLogLog(0.01);
together.merge(ll_monday);
together.merge(ll_tuesday);
together.merge(ll_wednesday);

// report
console.log('unique per day: ' + Math.round(ll_monday.count()) + ' ' + Math.round(ll_tuesday.count()) + ' ' + Math.round(ll_wednesday.count()));
console.log('unique numbers overall: ' + Math.round(together.count()));
Adenoma answered 31/3, 2014 at 12:18 Comment(0)
U
3

We've open sourced a project called Stream-Lib that has a LogLog implementation. The work was based on this paper.

Underpart answered 4/12, 2011 at 12:53 Comment(0)
F
2

Using the js version @actual provided, I tried to implement the same in C#, which seems close enough. Just changed fnv1a function a little bit and renamed it to getHashCode. (Credit goes to Jenkins hash function, http://en.wikipedia.org/wiki/Jenkins_hash_function)

public class HyperLogLog
{
    private double mapSize, alpha_m, k;
    private int kComplement;
    private Dictionary<int, int> Lookup = new Dictionary<int, int>();
    private const double pow_2_32 = 4294967297;

    public HyperLogLog(double stdError)
    {
        mapSize = (double)1.04 / stdError;
        k = (long)Math.Ceiling(log2(mapSize * mapSize));

        kComplement = 32 - (int)k;
        mapSize = (long)Math.Pow(2, k);

        alpha_m = mapSize == 16 ? (double)0.673
              : mapSize == 32 ? (double)0.697
              : mapSize == 64 ? (double)0.709
              : (double)0.7213 / (double)(1 + 1.079 / mapSize);
        for (int i = 0; i < mapSize; i++)
            Lookup[i] = 0;
    }

    private static double log2(double x)
    {
        return Math.Log(x) / 0.69314718055994530941723212145818;//Ln2
    }
    private static int getRank(uint hash, int max)
    {
        int r = 1;
        uint one = 1;
        while ((hash & one) == 0 && r <= max)
        {
            ++r;
            hash >>= 1;
        }
        return r;
    }
    public static uint getHashCode(string text)
    {
        uint hash = 0;

        for (int i = 0, l = text.Length; i < l; i++)
        {
            hash += (uint)text[i];
            hash += hash << 10;
            hash ^= hash >> 6;
        }
        hash += hash << 3;
        hash ^= hash >> 6;
        hash += hash << 16;

        return hash;
    }

    public int Count()
    {
        double c = 0, E;

        for (var i = 0; i < mapSize; i++)
            c += 1d / Math.Pow(2, (double)Lookup[i]);

        E = alpha_m * mapSize * mapSize / c;

        // Make corrections & smoothen things.
        if (E <= (5 / 2) * mapSize)
        {
            double V = 0;
            for (var i = 0; i < mapSize; i++)
                if (Lookup[i] == 0) V++;
            if (V > 0)
                E = mapSize * Math.Log(mapSize / V);
        }
        else
            if (E > (1 / 30) * pow_2_32)
                E = -pow_2_32 * Math.Log(1 - E / pow_2_32);
        // Made corrections & smoothen things, or not.

        return (int)E;
    }

    public void Add(object val)
    {
        uint hashCode = getHashCode(val.ToString());
        int j = (int)(hashCode >> kComplement);

        Lookup[j] = Math.Max(Lookup[j], getRank(hashCode, kComplement));
    }
} 
Faubourg answered 12/6, 2012 at 11:5 Comment(0)
C
2

I know this is an old post but the @buryat implementation has moved, and is in any case incomplete, and a bit on the slow side (sorry o_o ).

I've taken the implementation used by the new Redis release which can be found here and ported it to PHP. The repo is here https://github.com/joegreen0991/HyperLogLog

<?php

class HyperLogLog {

    private $HLL_P_MASK;

    private $HLL_REGISTERS;

    private $ALPHA;

    private $registers;

    public function __construct($HLL_P = 14)
    {
        $this->HLL_REGISTERS = (1 << $HLL_P); /* With P=14, 16384 registers. */

        $this->HLL_P_MASK = ($this->HLL_REGISTERS - 1); /* Mask to index register. */

        $this->ALPHA = 0.7213 / (1 + 1.079 / $this->HLL_REGISTERS);

        $this->registers = new SplFixedArray($this->HLL_REGISTERS);

        for ($i = 0; $i < $this->HLL_REGISTERS; $i++) {
            $this->registers[$i] = 0;
        }
    }

    public function add($v)
    {
        $h = crc32(md5($v));

        $h |= 1 << 63; /* Make sure the loop terminates. */
        $bit = $this->HLL_REGISTERS; /* First bit not used to address the register. */
        $count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
        while(($h & $bit) == 0) {
            $count++;
            $bit <<= 1;
        }

        /* Update the register if this element produced a longer run of zeroes. */
        $index = $h & $this->HLL_P_MASK; /* Index a register inside registers. */

        if ($this->registers[$index] < $count) {
            $this->registers[$index] = $count;
        }
    }

    public function export()
    {
        $str = '';
        for ($i = 0; $i < $this->HLL_REGISTERS; $i++) {
            $str .= chr($this->registers[$i]);
        }
        return $str;
    }

    public function import($str)
    {
        for ($i = 0; $i < $this->HLL_REGISTERS; $i++) {
            $this->registers[$i] = isset($str[$i]) ? ord($str[$i]) : 0;
        }
    }

    public function merge($str)
    {
        for ($i = 0; $i < $this->HLL_REGISTERS; $i++) {
            if(isset($str[$i]))
            {
                $ord = ord($str[$i]);
                if ($this->registers[$i] < $ord) {
                    $this->registers[$i] = $ord;
                }
            }

        }
    }

    /**
     * @static
     * @param $arr
     * @return int Number of unique items in $arr
     */
    public function count() {
        $E = 0;

        $ez = 0;

        for ($i = 0; $i < $this->HLL_REGISTERS; $i++) {
            if ($this->registers[$i] !== 0) {
                $E += (1.0 / pow(2, $this->registers[$i]));
            } else {
                $ez++;
                $E += 1.0;
            }
        }

        $E = (1 / $E) * $this->ALPHA * $this->HLL_REGISTERS * $this->HLL_REGISTERS;

        /* Use the LINEARCOUNTING algorithm for small cardinalities.
         * For larger values but up to 72000 HyperLogLog raw approximation is
         * used since linear counting error starts to increase. However HyperLogLog
         * shows a strong bias in the range 2.5*16384 - 72000, so we try to
         * compensate for it. */
        if ($E < $this->HLL_REGISTERS * 2.5 && $ez != 0) {
            $E = $this->HLL_REGISTERS * log($this->HLL_REGISTERS / $ez);
        }

        else if ($this->HLL_REGISTERS == 16384 && $E < 72000) {
            // We did polynomial regression of the bias for this range, this
            // way we can compute the bias for a given cardinality and correct
            // according to it. Only apply the correction for P=14 that's what
            // we use and the value the correction was verified with.
            $bias = 5.9119 * 1.0e-18 * ($E*$E*$E*$E)
                -1.4253 * 1.0e-12 * ($E*$E*$E)+
                1.2940 * 1.0e-7 * ($E*$E)
                -5.2921 * 1.0e-3 * $E+
                83.3216;
            $E -= $E * ($bias/100);
        }

        return floor($E);
    }
}
Champignon answered 7/4, 2014 at 8:15 Comment(0)
G
1

I implemented loglog and hyperloglog in JS and PHP and well-commented code https://github.com/buryat/loglog

Guncotton answered 8/5, 2012 at 20:5 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.