I have a column in a DataFrame with values:
[1, 1, -1, 1, -1, -1]
How can I group them like this?
[1,1] [-1] [1] [-1, -1]
I have a column in a DataFrame with values:
[1, 1, -1, 1, -1, -1]
How can I group them like this?
[1,1] [-1] [1] [-1, -1]
You can use groupby
by custom Series
:
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print(df)
a
0 1
1 1
2 -1
3 1
4 -1
5 -1
print(df['a'].ne(df['a'].shift()).cumsum())
0 1
1 1
2 2
3 3
4 4
5 4
Name: a, dtype: int32
for i, g in df.groupby(df['a'].ne(df['a'].shift()).cumsum()):
print(i)
print(g)
print(g.a.tolist())
1
a
0 1
1 1
[1, 1]
2
a
2 -1
[-1]
3
a
3 1
[1]
4
a
4 -1
5 -1
[-1, -1]
.groupby()
consecutive dates with 1 hour difference, change the condition to df['date'].diff() != pd.Timedelta('1 hour')
–
Claudetta itertools.groupby()
, but it's Contributions Welcome, No action on 6 Jul 2018
–
Mcvey ==
, there's actually a vectorized .ne()
function: df.a.ne(df.a.shift())
–
Jedlicka Using groupby
from itertools
data from Jez
from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]
cumsum()
solution –
Mcvey The operation of groupby() is similar to the uniq filter in Unix. It generates a break or new group every time the value of the key function changes
–
Mcvey Series.diff
is another way to mark the group boundaries (a!=a.shift
means a.diff!=0
):
consecutives = df['a'].diff().ne(0).cumsum()
# 0 1
# 1 1
# 2 2
# 3 3
# 4 4
# 5 4
# Name: a, dtype: int64
And to turn these groups into a Series of lists (see the other answers for a list of lists), aggregate with groupby.agg
or groupby.apply
:
df['a'].groupby(consecutives).agg(list)
# a
# 1 [1, 1]
# 2 [-1]
# 3 [1]
# 4 [-1, -1]
# Name: a, dtype: object
If you are dealing with string values:
s = pd.DataFrame(['A','A','A','BB','BB','CC','A','A','BB'], columns=['a'])
string_groups = sum([['%s_%s' % (i,n) for i in g] for n,(k,g) in enumerate(itertools.groupby(s.a))],[])
>>> string_groups
['A_0', 'A_0', 'A_0', 'BB_1', 'BB_1', 'CC_2', 'A_3', 'A_3', 'BB_4']
grouped = s.groupby(string_groups, sort=False).agg(list)
grouped.index = grouped.index.str.split('_').str[0]
>>> grouped
a
A [A, A, A]
BB [BB, BB]
CC [CC]
A [A, A]
BB [BB]
As a separate function:
def groupby_consec(df, col):
string_groups = sum([['%s_%s' % (i, n) for i in g]
for n, (k, g) in enumerate(itertools.groupby(df[col]))], [])
return df.groupby(string_groups, sort=False)
© 2022 - 2024 — McMap. All rights reserved.
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1]})
is a better testcase, to make sure we catch all groups, not just length-two – Jedlicka