How to groupby consecutive values in pandas DataFrame [duplicate]
Asked Answered
B

4

59

I have a column in a DataFrame with values:

[1, 1, -1, 1, -1, -1]

How can I group them like this?

[1,1] [-1] [1] [-1, -1]
Brahmana answered 25/11, 2016 at 10:29 Comment(1)
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1]}) is a better testcase, to make sure we catch all groups, not just length-twoJedlicka
D
80

You can use groupby by custom Series:

df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print(df)
   a
0  1
1  1
2 -1
3  1
4 -1
5 -1

print(df['a'].ne(df['a'].shift()).cumsum())
0    1
1    1
2    2
3    3
4    4
5    4
Name: a, dtype: int32
for i, g in df.groupby(df['a'].ne(df['a'].shift()).cumsum()):
    print(i)
    print(g)
    print(g.a.tolist())

1
   a
0  1
1  1
[1, 1]
2
   a
2 -1
[-1]
3
   a
3  1
[1]
4
   a
4 -1
5 -1
[-1, -1]
Doubleheader answered 25/11, 2016 at 10:32 Comment(3)
In case you want to use this solution to .groupby() consecutive dates with 1 hour difference, change the condition to df['date'].diff() != pd.Timedelta('1 hour')Claudetta
github.com/pandas-dev/pandas/issues/5494 asks for the same behaviour with the itertools.groupby(), but it's Contributions Welcome, No action on 6 Jul 2018Mcvey
Instead of ==, there's actually a vectorized .ne() function: df.a.ne(df.a.shift())Jedlicka
L
23

Using groupby from itertools data from Jez

from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]
Lahdidah answered 24/7, 2018 at 18:12 Comment(3)
this answer is more explicit than the accepted cumsum() solutionMcvey
from the document: The operation of groupby() is similar to the uniq filter in Unix. It generates a break or new group every time the value of the key function changesMcvey
While this is a literal answer to the question, it loses the oft-needed labeling of the group of consecutive values.Impartible
S
9

Series.diff is another way to mark the group boundaries (a!=a.shift means a.diff!=0):

consecutives = df['a'].diff().ne(0).cumsum()

# 0    1
# 1    1
# 2    2
# 3    3
# 4    4
# 5    4
# Name: a, dtype: int64

And to turn these groups into a Series of lists (see the other answers for a list of lists), aggregate with groupby.agg or groupby.apply:

df['a'].groupby(consecutives).agg(list)

# a
# 1      [1, 1]
# 2        [-1]
# 3         [1]
# 4    [-1, -1]
# Name: a, dtype: object
Streak answered 1/8, 2021 at 14:12 Comment(0)
P
1

If you are dealing with string values:

s = pd.DataFrame(['A','A','A','BB','BB','CC','A','A','BB'], columns=['a'])
string_groups = sum([['%s_%s' % (i,n) for i in g] for n,(k,g) in enumerate(itertools.groupby(s.a))],[])

>>> string_groups 
['A_0', 'A_0', 'A_0', 'BB_1', 'BB_1', 'CC_2', 'A_3', 'A_3', 'BB_4']

grouped = s.groupby(string_groups, sort=False).agg(list)
grouped.index = grouped.index.str.split('_').str[0]

>>> grouped
            a
A   [A, A, A]
BB   [BB, BB]
CC       [CC]
A      [A, A]
BB       [BB]

As a separate function:

def groupby_consec(df, col):
    string_groups = sum([['%s_%s' % (i, n) for i in g]
                         for n, (k, g) in enumerate(itertools.groupby(df[col]))], [])
    return df.groupby(string_groups, sort=False)
Portingale answered 30/9, 2021 at 16:4 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.