I have got a memory error due to a huge amount of images, that happens when I directly load all the images from their given paths in a dataframe.
dataframe(df_train_data
)'s format for training set is like below:
class_id ID uu vv
Abnormal 1001 1001_05.png 1001_06.png
Abnormal 1002 1002_05.png 1002_06.png
Abnormal 1003 1003_05.png 1003_06.png
Normal 1554 1554_05.png 1554_06.png
Normal 1555 1555_05.png 1555_06.png
Normal 1556 1556_05.png 1556_06.png
...
Note that Normal
class instances come after all Abnormal
class instances, they are all ordered in that way.
I am reading the images and their IDs in the following form:
X_uu_train = read_imgs(df_train_data.uu.values, img_height, img_width, channels)
X_vv_train = read_imgs(df_train_data.vv.values, img_height, img_width, channels)
train_labels = df_train_data.ID.values
where read_imgs
returns all of the images in numpy
array.
The Memory
error happens right at the X_uu_train = read_imgs(df_train_data.uu.values, img_height, img_width, channels)
.
I have seen some solutions where it is recommended to use ImageDataGenerator
to load images as batches. However, I am not loading images from a directory as shown on most sites. Turns out that there is a way to load images from data frames that goes like .flow_from_dataframe
.
Here is the training stage:
hist = base_model.fit([X_uu_train, X_vv_train], train_labels,
batch_size=batch_size, epochs=epochs, verbose=1,
validation_data=([X_uu_val, X_vv_val], val_labels), shuffle=True)
preds = base_model.predict([X_uu_val, X_vv_val])
The thing is it does it only with a single input, but my generator should bring image batches for dual input.
Could someone help me construct an ImageDataGenerator
so that I can hopefully load images without running into MemoryError
While loading from uu
and vv
columns, images should be input into the network with their corresponding pairs in a shuffled order.
P.S. I may provide more info if necessary
Thank you.
EDIT:
<BatchDataset shapes: (((None, 224, 224, 3), (None, 224, 224, 3)), (None,)), types: ((tf.float32, tf.float32), tf.int32)>
EDIT-2:
AttributeError Traceback (most recent call last)
<ipython-input-18-4ae4c12b2b76> in <module>
43
44 base_model = combined_net()
---> 45 hist = base_model.fit(ds_train, epochs=epochs, verbose=1, validation_data=ds_val, shuffle=True)
46
47 preds = base_model.predict(ds_val)
~\Anaconda3\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
1152 sample_weight=sample_weight,
1153 class_weight=class_weight,
-> 1154 batch_size=batch_size)
1155
1156 # Prepare validation data.
~\Anaconda3\lib\site-packages\keras\engine\training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
577 feed_input_shapes,
578 check_batch_axis=False, # Don't enforce the batch size.
--> 579 exception_prefix='input')
580
581 if y is not None:
~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
97 data = data.values if data.__class__.__name__ == 'DataFrame' else data
98 data = [data]
---> 99 data = [standardize_single_array(x) for x in data]
100
101 if len(data) != len(names):
~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in <listcomp>(.0)
97 data = data.values if data.__class__.__name__ == 'DataFrame' else data
98 data = [data]
---> 99 data = [standardize_single_array(x) for x in data]
100
101 if len(data) != len(names):
~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in standardize_single_array(x)
32 'Got tensor with shape: %s' % str(shape))
33 return x
---> 34 elif x.ndim == 1:
35 x = np.expand_dims(x, 1)
36 return x
AttributeError: 'BatchDataset' object has no attribute 'ndim'
x.values
in the place ofxx
atload(xx)
? And ifds
returns only one expression then what I should put at.predict([X_uu_val, X_vv_val])
to get predictions? Please simplify your answer a bit more :xD – Swollen