I want to be able to get a estimate of the distance between two (latitude, longitude) points. I want to undershoot, as this will be for A* graph search and I want it to be fast. The points will be at most 800 km apart.
The answers to Haversine Formula in Python (Bearing and Distance between two GPS points) provide Python implementations that answer your question.
Using the implementation below I performed 100,000 iterations in less than 1 second on an older laptop. I think for your purposes this should be sufficient. However, you should profile anything before you optimize for performance.
from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
# Radius of earth in kilometers is 6371
km = 6371* c
return km
To underestimate haversine(lat1, long1, lat2, long2) * 0.90
or whatever factor you want. I don't see how introducing error to your underestimation is useful.
Since the distance is relatively small, you can use the equirectangular distance approximation. This approximation is faster than using the Haversine formula. So, to get the distance from your reference point (lat1, lon1) to the point you're testing (lat2, lon2) use the formula below:
from math import sqrt, cos, radians
R = 6371 # radius of the earth in km
x = (radians(lon2) - radians(lon1)) * cos(0.5 * (radians(lat2) + radians(lat1)))
y = radians(lat2) - radians(lat1)
d = R * sqrt(x*x + y*y)
Since R
is in km, the distance d
will be in km.
Reference: http://www.movable-type.co.uk/scripts/latlong.html
sin^2(dlon) ~ dlon^2
, sin^2(dlat) ~ dlat^2
and cos(dlat) ~ 1
where dlon=lon2-lon1
and dlat=lat2-lat1
. All approximations are >= the exact version, thus the approximated distance will be larger than the exact distance. –
Kutuzov One idea for speed is to transform the long/lat coordinated into 3D (x,y,z) coordinates. After preprocessing the points, use the Euclidean distance between the points as a quickly computed undershoot of the actual distance.
If the distance between points is relatively small (meters to few km range) then one of the fast approaches could be
from math import cos, sqrt
def qick_distance(Lat1, Long1, Lat2, Long2):
x = Lat2 - Lat1
y = (Long2 - Long1) * cos((Lat2 + Lat1)*0.00872664626)
return 111.319 * sqrt(x*x + y*y)
Lat, Long are in radians, distance in km.
Deviation from Haversine distance is in the order of 1%, while the speed gain is more than ~10x.
0.00872664626 = 0.5 * pi/180,
111.319 - is the distance that corresponds to 1degree at Equator, you could replace it with your median value like here https://www.cartographyunchained.com/cgsta1/ or replace it with a simple lookup table.
For maximal speed, you could create something like a rainbow table for coordinate distances. It sounds like you already know the area that you are working with, so it seems like pre-computing them might be feasible. Then, you could load the nearest combination and just use that.
For example, in the continental United States, the longitude is a 55 degree span and latitude is 20, which would be 1100 whole number points. The distance between all the possible combinations is a handshake problem which is answered by (n-1)(n)/2 or about 600k combinations. That seems pretty feasible to store and retrieve. If you provide more information about your requirements, I could be more specific.
You can use cdist
from scipy
spacial distance class:
For example:
from scipy.spatial.distance import cdist
df1_latlon = df1[['lat','lon']]
df2_latlon = df2[['lat', 'lon']]
distanceCalc = cdist(df1_latlon, df2_latlon, metric=haversine)
To calculate a haversine distance between 2 points u can simply use mpu.haversine_distance() library, like this:
>>> import mpu
>>> munich = (48.1372, 11.5756)
>>> berlin = (52.5186, 13.4083)
>>> round(mpu.haversine_distance(munich, berlin), 1)
>>> 504.2
Please use the following code.
def distance(lat1, lng1, lat2, lng2):
#return distance as meter if you want km distance, remove "* 1000"
radius = 6371 * 1000
dLat = (lat2-lat1) * math.pi / 180
dLng = (lng2-lng1) * math.pi / 180
lat1 = lat1 * math.pi / 180
lat2 = lat2 * math.pi / 180
val = sin(dLat/2) * sin(dLat/2) + sin(dLng/2) * sin(dLng/2) * cos(lat1) * cos(lat2)
ang = 2 * atan2(sqrt(val), sqrt(1-val))
return radius * ang
© 2022 - 2024 — McMap. All rights reserved.