Assuming that your series is made up of datetime
objects, You need to use Series.apply
. Example -
import datetime
df['<column>'] = df['<column>'].apply(lambda dt: datetime.datetime(dt.year, dt.month, dt.day, dt.hour,15*(dt.minute // 15)))
The above example to always round to the previous quarter hour (behavior similar to floor function).
EDIT
To round to the correct quarter hour (as in , if its 7 mins 30 seconds past previous quarter, to show the next quarter) . We can use the below example -
import datetime
df['<column>'] = df['<column>'].apply(lambda dt: datetime.datetime(dt.year, dt.month, dt.day, dt.hour,15*round((float(dt.minute) + float(dt.second)/60) / 15)))
The above would only take the latest seconds into consideration , if you want the millisecond/microsecond into consideration , you can add that to the above equation as - (float(dt.minute) + float(dt.second)/60 + float(dt.microsecond)/60000000)