Is there a library or a class/function that I can use to convert an integer to its verbal representation?
Example input:
4,567,788`
Example output:
Four million, Five hundred sixty-seven thousand, seven hundred eighty-eight
Is there a library or a class/function that I can use to convert an integer to its verbal representation?
Example input:
4,567,788`
Example output:
Four million, Five hundred sixty-seven thousand, seven hundred eighty-eight
If you use the code found in converting numbers in to words C#, and you need it for decimal numbers, here is how to do it:
public string DecimalToWords(decimal number)
{
if (number == 0)
return "zero";
if (number < 0)
return "minus " + DecimalToWords(Math.Abs(number));
string words = "";
int intPortion = (int)number;
decimal fraction = (number - intPortion)*100;
int decPortion = (int)fraction;
words = NumericToWords(intPortion);
if (decPortion > 0)
{
words += " and ";
words += NumericToWords(decPortion);
}
return words;
}
Currently the best, most robust, library for this is definitely Humanizer. It's open sourced and available as a NuGet package:
Console.WriteLine(4567788.ToWords()); // => four million five hundred and sixty-seven thousand seven hundred and eighty-eight
It also has a wide range of tools solving the small problems every application has with string
s, enum
s, DateTime
s, TimeSpan
s and so forth, and supports many different languages.
Console.WriteLine(4567788.ToOrdinalWords().Underscore().Hyphenate().ApplyCase(LetterCasing.AllCaps)); // => FOUR-MILLION-FIVE-HUNDRED-AND-SIXTY-SEVEN-THOUSAND-SEVEN-HUNDRED-AND-EIGHTY-EIGHTH
If you use the code found in converting numbers in to words C#, and you need it for decimal numbers, here is how to do it:
public string DecimalToWords(decimal number)
{
if (number == 0)
return "zero";
if (number < 0)
return "minus " + DecimalToWords(Math.Abs(number));
string words = "";
int intPortion = (int)number;
decimal fraction = (number - intPortion)*100;
int decPortion = (int)fraction;
words = NumericToWords(intPortion);
if (decPortion > 0)
{
words += " and ";
words += NumericToWords(decPortion);
}
return words;
}
A fully recursive version:
private static string[] ones = {
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine",
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen",
};
private static string[] tens = { "zero", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety" };
private static string[] thous = { "hundred", "thousand", "million", "billion", "trillion", "quadrillion" };
private static string fmt_negative = "negative {0}";
private static string fmt_dollars_and_cents = "{0} dollars and {1} cents";
private static string fmt_tens_ones = "{0}-{1}"; // e.g. for twenty-one, thirty-two etc. You might want to use an en-dash or em-dash instead of a hyphen.
private static string fmt_large_small = "{0} {1}"; // stitches together the large and small part of a number, like "{three thousand} {five hundred forty two}"
private static string fmt_amount_scale = "{0} {1}"; // adds the scale to the number, e.g. "{three} {million}";
public static string ToWords(decimal number) {
if (number < 0)
return string.format(fmt_negative, ToWords(Math.Abs(number)));
int intPortion = (int)number;
int decPortion = (int)((number - intPortion) * (decimal) 100);
return string.Format(fmt_dollars_and_cents, ToWords(intPortion), ToWords(decPortion));
}
private static string ToWords(int number, string appendScale = "") {
string numString = "";
// if the number is less than one hundred, then we're mostly just pulling out constants from the ones and tens dictionaries
if (number < 100) {
if (number < 20)
numString = ones[number];
else {
numString = tens[number / 10];
if ((number % 10) > 0)
numString = string.Format(fmt_tens_ones, numString, ones[number % 10]);
}
} else {
int pow = 0; // we'll divide the number by pow to figure out the next chunk
string powStr = ""; // powStr will be the scale that we append to the string e.g. "hundred", "thousand", etc.
if (number < 1000) { // number is between 100 and 1000
pow = 100; // so we'll be dividing by one hundred
powStr = thous[0]; // and appending the string "hundred"
} else { // find the scale of the number
// log will be 1, 2, 3 for 1_000, 1_000_000, 1_000_000_000, etc.
int log = (int)Math.Log(number, 1000);
// pow will be 1_000, 1_000_000, 1_000_000_000 etc.
pow = (int)Math.Pow(1000, log);
// powStr will be thousand, million, billion etc.
powStr = thous[log];
}
// we take the quotient and the remainder after dividing by pow, and call ToWords on each to handle cases like "{five thousand} {thirty two}" (curly brackets added for emphasis)
numString = string.Format(fmt_large_small, ToWords(number / pow, powStr), ToWords(number % pow)).Trim();
}
// and after all of this, if we were passed in a scale from above, we append it to the current number "{five} {thousand}"
return string.Format(fmt_amount_scale, numString, appendScale).Trim();
}
It currently works up to the (short scale) quadrillions. Additional support (for larger numbers, or for the long scale) can be added simply by changing the thous
variable.
This solution takes advantage of C# 7.0's support for local functions. I also used the new digit separator to make the larger numbers more readable.
public static class NumberExtensions
{
private const string negativeWord = "negative";
private static readonly Dictionary<ulong, string> _wordMap = new Dictionary<ulong, string>
{
[1_000_000_000_000_000_000] = "quintillion",
[1_000_000_000_000_000] = "quadrillion",
[1_000_000_000_000] = "trillion",
[1_000_000_000] = "billion",
[1_000_000] = "million",
[1_000] = "thousand",
[100] = "hundred",
[90] = "ninety",
[80] = "eighty",
[70] = "seventy",
[60] = "sixty",
[50] = "fifty",
[40] = "forty",
[30] = "thirty",
[20] = "twenty",
[19] = "nineteen",
[18] = "eighteen",
[17] = "seventeen",
[16] = "sixteen",
[15] = "fifteen",
[14] = "fourteen",
[13] = "thirteen",
[12] = "twelve",
[11] = "eleven",
[10] = "ten",
[9] = "nine",
[8] = "eight",
[7] = "seven",
[6] = "six",
[5] = "five",
[4] = "four",
[3] = "three",
[2] = "two",
[1] = "one",
[0] = "zero"
};
public static string ToWords(this short num)
{
var words = ToWords((ulong)Math.Abs(num));
return num < 0 ? $"{negativeWord} {words}" : words;
}
public static string ToWords(this ushort num)
{
return ToWords((ulong)num);
}
public static string ToWords(this int num)
{
var words = ToWords((ulong)Math.Abs(num));
return num < 0 ? $"{negativeWord} {words}" : words;
}
public static string ToWords(this uint num)
{
return ToWords((ulong)num);
}
public static string ToWords(this long num)
{
var words = ToWords((ulong)Math.Abs(num));
return num < 0 ? $"{negativeWord} {words}" : words;
}
public static string ToWords(this ulong num)
{
var sb = new StringBuilder();
var delimiter = String.Empty;
void AppendWords(ulong dividend)
{
void AppendDelimitedWord(ulong key)
{
sb.Append(delimiter);
sb.Append(_wordMap[key]);
delimiter = 20 <= key && key < 100 ? "-" : " ";
}
if (_wordMap.ContainsKey(dividend))
{
AppendDelimitedWord(dividend);
}
else
{
var divisor = _wordMap.First(m => m.Key <= dividend).Key;
var quotient = dividend / divisor;
var remainder = dividend % divisor;
if (quotient > 0 && divisor >= 100)
{
AppendWords(quotient);
}
AppendDelimitedWord(divisor);
if (remainder > 0)
{
AppendWords(remainder);
}
}
}
AppendWords(num);
return sb.ToString();
}
}
The meat is in the last ToWords
overload.
JavaScript version:
Number.prototype.numberToWords = function () {
var unitsMap = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"];
var tensMap = ["zero", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"];
var num = this.valueOf();
if (Math.round(num == 0)) {
return "zero";
}
if (num < 0) {
var positivenum = Math.abs(num);
return "minus " + Number(positivenum).numberToWords();
}
var words = "";
if (Math.floor(num / 1000000) > 0) {
words += Math.floor(num / 1000000).numberToWords() + " million ";
num = Math.floor(num % 1000000);
}
if (Math.floor(num / 1000) > 0) {
words += Math.floor(num / 1000).numberToWords() + " thousand ";
num = Math.floor(num % 1000);
}
if (Math.floor(num / 100) > 0) {
words += Math.floor(num / 100).numberToWords() + " hundred ";
num = Math.floor(num % 100);
}
if (Math.floor(num > 0)) {
if (words != "") {
words += "and ";
}
if (num < 20) {
words += unitsMap[num];
}
else {
words += tensMap[Math.floor(num / 10)];
if ((num % 10) > 0) {
words += "-" + unitsMap[Math.round(num % 10)];
}
}
}
return words.trim();
}
Spanish version:
public static string numeroALetras(int number)
{
if (number == 0)
return "cero";
if (number < 0)
return "menos " + numeroALetras(Math.Abs(number));
string words = "";
if ((number / 1000000) > 0)
{
words += numeroALetras(number / 1000000) + " millón ";
number %= 1000000;
}
if ((number / 1000) > 0)
{
words += (number / 1000) == 1? "mil ": numeroALetras(number / 1000) + " mil ";
number %= 1000;
}
if ((number / 100) == 1)
{
if (number == 100)
words += "cien";
else words += (number / 100)> 1? numeroALetras(number / 100) + " ciento ":"ciento ";
number %= 100;
}
if ((number / 100) > 1)
{
var hundredMap = new[] {"","", "dosc", "tresc", "cuatroc", "quin", "seisc", "sietec", "ochoc", "novec" };
if (number > 199)
words += hundredMap[number/100] + "ientos ";
else {
words += numeroALetras(number / 100) + " ientos ";
}
number %= 100;
}
if (number > 0)
{
if (words != "")
words += " ";
var unitsMap = new[] { "cero", "uno", "dos", "tres", "cuatro", "cinco", "seis", "siete", "ocho", "nueve", "diez", "once", "doce", "trece", "catorce", "quince", "dieciseis", "diecisiete", "dieciocho", "diecinueve", "veinte" };
var tensMap = new[] { "cero", "diez", "veinti", "treinta", "cuarenta", "cincuenta", "sesenta", "setenta", "ochenta", "noventa" };
if (number < 21)
words += unitsMap[number];
else
{
words += tensMap[number / 10];
if ((number % 10) > 0)
words += ((number % 10)>2?" y ": "") + unitsMap[number % 10];
}
}
return words;
}
I created a web API that converts numbers to words using C#.
Input is a whole number or a number with decimal points in 48-hour time.
The call comes from a front-end application using an Ajax Post method and returns the converted result in the web page.
I shared in GitHub: https://github.com/marvinglennlacuna/NumbersToWordsConverter.Api
With the following technical implementation:
And with technical documentation about the following:
Result via web page (US-001)
US-001 Convert numbers to words via web page process
US-001 Convert numbers to words via web page output
Result via Postman (US-002)
US-002 - Convert numbers to words via Postman process
US-002 - Convert numbers to words via Postman output
I have written a C# function, NumIntToWords(String NumIn)
, that provides a simple, short, and efficient method of converting integer numbers to words in C#, complying with US English grammar rules.
The function uses my devised method of SLST (Single Loop String Triplet).
Unlike other methods I had seen used here and elsewhere, the function has the following features:
I have opted for the integer number to be converted to be passed as a string so you can handle very large integer numbers easily.
You can use it like this:
Console.WriteLine(NumIntToWords("1991345678974"));
Output:
One Trillion Nine Hundred Ninety-One Billion Three Hundred Forty-Five Million Six Hundred Seventy-Eight Thousand Nine Hundred Seventy-Four
C# SLST Function Method (c) Mohsen Alyafei:
/*********************************************************************
* @function : NumIntToWords(String NumIn)
* @purpose : Converts Unsigned Integers to Words
* Using the SLST Method (C) Mohsen Alyafei 2019.
* Does not check for Non-Numerics or +/- signs
* @version : 2.11
* @author : Mohsen Alyafei
* @Licence : MIT
* @date : 03 April 2022
* @in_param : {NumIn} (Required): Number in string format
* @returns : {string}: The number in English Words US Grammar
**********************************************************************/
public static string NumIntToWords(String NumIn) {
if (NumIn.TrimStart('0') == "")
return "Zero"; // If empty or zero return Zero
string[] T10s = {"", "One", "Two", "Three", "Four", "Five", "Six",
"Seven", "Eight", "Nine", "Ten", "Eleven", "Twelve",
"Thirteen", "Fourteen", "Fifteen", "Sixteen",
"Seventeen", "Eighteen", "Nineteen"},
T20s = {"", "", "Twenty", "Thirty", "Forty", "Fifty",
"Sixty", "Seventy","Eighty","Ninety"},
Scales = {"", "Thousand", "Million", "Billion", "Trillion"}; // Increase scale here (unlimited)
NumIn = new String('0', NumIn.Length * 2 % 3) + NumIn; // Make it a String Triplet
String numToWords = "", wordTriplet, Triplet;
for (int digits = NumIn.Length; digits > 0; digits -= 3) { // Single Loop
Triplet = NumIn.Substring(NumIn.Length - digits, 3); // Get next Triplet
if (Triplet != "000") { // Convert Only if not empty
wordTriplet = "";
int ScalePos = digits / 3 - 1, // Scale name position
hund = int.Parse("" + Triplet[0]),
tens = int.Parse(Triplet.Substring(1, 2)),
ones = int.Parse("" + Triplet[2]);
wordTriplet = (hund>0 ? T10s[hund] + " Hundred" : "") +
(tens>0 && hund>0 ? " " : "") +
(tens<20 ? T10s[tens]: T20s[int.Parse("" + Triplet[1])] + (ones>0? "-" + T10s[ones] : "")) +
(ScalePos>0 ? " " : "") + Scales[ScalePos]; // Add Scale Name to Triplet Word
numToWords += (numToWords != "" ? " " : "") + wordTriplet; // Concatenate Next Triplet Word
}
} // Loop for the next Triplet
return numToWords; // Return full Number in Words
}
Use:
Imports System.Text
Public Class NumberWriter
Public Shared Function Parse(ByVal Number As String) As String
If Not AreNumbers(Number) Then Return ""
Dim TempQueue As New Queue(Of String)
For Each ItemA As Char In Number.Replace(",", "").Reverse
TempQueue.Enqueue(ItemA)
Next
Dim Blocks As New List(Of String)
Dim BlockEmpty As New List(Of Boolean)
Do
Dim TempBlock As New StringBuilder(3)
TempBlock.Append(TempQueue.Dequeue)
If TempQueue.Count > 0 Then
TempBlock.Append(TempQueue.Dequeue)
If TempQueue.Count > 0 Then
TempBlock.Append(TempQueue.Dequeue)
End If
End If
Blocks.Add(StrReverse(TempBlock.ToString))
BlockEmpty.Add(TempBlock.ToString = "000")
If TempQueue.Count < 1 Then Exit Do
Loop
Dim ResultStack As New Stack(Of String)
For int1 As Integer = 0 To Blocks.Count - 1
ResultStack.Push(ReadBlock(Blocks(int1)) & If(Not int1 = 0, If(Not BlockEmpty(int1), " " & CapitalizeWord(GetPlaceValueSet(int1)) & If(BlockEmpty(int1 - 1), "", ", "), ""), ""))
Next
Dim Result1 As String = ""
Do Until ResultStack.Count < 1
Result1 &= ResultStack.Pop
Loop
Return RemoveGrammarErrors(Result1)
End Function
Private Shared Function RemoveGrammarErrors(ByVal Str As String) As String
Dim tstr As String = Str
tstr.Replace(" ", " ")
tstr.Replace(" , ", ", ")
Return tstr
End Function
Private Shared Function AreNumbers(ByVal Str1 As String) As Boolean
Dim Numbers() As String = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ","}
For Each ItemA As Char In Str1
Dim IsN As Boolean = False
For Each ItemB As String In Numbers
If ItemA = ItemB Then IsN = True
Next
If Not IsN Then
Return False
End If
Next
Return True
End Function
Private Shared Function ReadBlock(ByVal Block As String)
Select Case Block.Length
Case 1
Return ReadSingleDigit(Block)
Case 2
Return ReadTwoDigits(Block)
Case 3
Return ReadThreeDigits(Block)
Case Else
Throw New Exception
End Select
End Function
Private Shared Function ReadThreeDigits(ByVal Digits As String)
If Digits.Length > 3 Then Throw New ArgumentException("There are too many digits.")
Dim Result As String = ""
If Not Digits(0) = "0" Then
Result &= ReadSingleDigit(Digits(0)) & " Hundred "
End If
Result &= ReadTwoDigits(Digits.Substring(1))
Return Result
End Function
Private Shared Function ReadTwoDigits(ByVal Digits As String)
If Digits.Length > 2 Then Throw New ArgumentException("There are too many digits.")
Select Case Digits(0)
Case "0"
Return ReadSingleDigit(Digits(1))
Case "1"
Return ReadTeenNumber(Digits)
Case Else
Return ReadFirstInNumberPair(Digits(0)) & If(Digits(1) = "0", "", "-" & ReadSingleDigit(Digits(1)))
End Select
End Function
Private Shared Function ReadSingleDigit(ByVal Digit As String) As String
If Not Digit.Length = 1 Then Throw New ArgumentException("There must be only one digit and it must be more than zero.")
Select Case Digit
Case "0"
Return ""
Case "1"
Return "One"
Case "2"
Return "Two"
Case "3"
Return "Three"
Case "4"
Return "Four"
Case "5"
Return "Five"
Case "6"
Return "Six"
Case "7"
Return "Seven"
Case "8"
Return "Eight"
Case "9"
Return "Nine"
Case Else
Throw New Exception()
End Select
End Function
Private Shared Function ReadTeenNumber(ByVal Num As String) As String
Select Case Num
Case "11"
Return "Eleven"
Case "12"
Return "Twelve"
Case "13"
Return "Thirteen"
Case "14"
Return "Fourteen"
Case "15"
Return "Fifteen"
Case "16"
Return "Sixteen"
Case "17"
Return "Seventeen"
Case "18"
Return "Eighteen"
Case "19"
Return "Nineteen"
Case Else
Throw New Exception()
End Select
End Function
Private Shared Function ReadFirstInNumberPair(ByVal Num As String) As String
If Not (Num > 1 OrElse Num < 10) Then Throw New ArgumentException("Number must be more than 1 and less than 10")
Select Case Num
Case "2"
Return "Twenty"
Case "3"
Return "Thirty"
Case "4"
Return "Fourty"
Case "5"
Return "Fifty"
Case "6"
Return "Sixty"
Case "7"
Return "Seventy"
Case "8"
Return "Eighty"
Case "9"
Return "Ninety"
Case Else
Throw New Exception()
End Select
End Function
Private Shared Function CapitalizeWord(ByVal Word As String) As String
Return Word.Substring(0, 1).ToUpper & Word.Substring(1)
End Function
Private Shared Function GetPlaceValueSet(ByVal Num As Byte) As String
Select Case Num
Case 0
Return "" 'Hundreds
Case 1
Return "Thousand"
Case 2
Return "Million"
Case 3
Return "Billion"
Case 4
Return "Trillion"
Case 5
Return "Quadrillion"
Case 6
Return "Quintillion"
Case 7
Return "Sextillion"
Case 8
Return "Septillion"
Case 9
Return "Octillion"
Case 10
Return "Nonillion"
Case 11
Return "octillion"
Case 12
Return "nonillion"
Case 13
Return "decillion"
Case 14
Return "undecillion"
Case 15
Return "dodecillion,"
Case 16
Return "tredecillion"
Case 17
Return "quattuordecillion"
Case 18
Return "quindecillion"
Case 19
Return "sexdecillion"
Case 20
Return "septendecillion"
Case 21
Return "octodecillion"
Case 22
Return "novemdecillion"
Case 23
Return "vigintillion"
Case 24
Return "unvigintillion"
Case 25
Return "dovigintillion"
Case 26
Return "trevigintillion"
Case 27
Return "quattuorvigintillion"
Case 28
Return "quinvigintillion"
Case 29
Return "sexvigintillion"
Case 30
Return "septenvigintillion"
Case 31
Return "octovigintillion"
Case 32
Return "novemvigintillion"
Case 33
Return "trigintillion"
Case 34
Return "untrigintillion"
Case 35
Return "dotrigintillion"
Case 36
Return "tretrigintillion"
Case 37
Return "quattuortrigintillion"
Case 38
Return "quintrigintillion"
Case 39
Return "sextrigintillion"
Case 40
Return "septentrigintillion"
Case 41
Return "octotrigintillion"
Case Else
Throw New Exception
End Select
End Function
End Class
It's in VB.NET and coverts number to verbal. It handles numbers up to 123 characters long.
Functionality with a more detailed approach:
public static class NumberToWord
{
private static readonly Dictionary<long, string> MyDictionary = new Dictionary<long, string>();
static NumberToWord()
{
MyDictionary.Add(1000000000000000, "quadrillion");
MyDictionary.Add(1000000000000, "trillion");
MyDictionary.Add(1000000000, "billion");
MyDictionary.Add(1000000, "million");
MyDictionary.Add(1000, "thousand");
MyDictionary.Add(100, "hundread");
MyDictionary.Add(90, "ninety");
MyDictionary.Add(80, "eighty");
MyDictionary.Add(70, "seventy");
MyDictionary.Add(60, "sixty");
MyDictionary.Add(50, "fifty");
MyDictionary.Add(40, "fourty");
MyDictionary.Add(30, "thirty");
MyDictionary.Add(20, "twenty");
MyDictionary.Add(19, "nineteen");
MyDictionary.Add(18, "eighteen");
MyDictionary.Add(17, "seventeen");
MyDictionary.Add(16, "sixteen");
MyDictionary.Add(15, "fifteen");
MyDictionary.Add(14, "fourteen");
MyDictionary.Add(13, "thirteen");
MyDictionary.Add(12, "twelve");
MyDictionary.Add(11, "eleven");
MyDictionary.Add(10, "ten");
MyDictionary.Add(9, "nine");
MyDictionary.Add(8, "eight");
MyDictionary.Add(7, "seven");
MyDictionary.Add(6, "six");
MyDictionary.Add(5, "five");
MyDictionary.Add(4, "four");
MyDictionary.Add(3, "three");
MyDictionary.Add(2, "two");
MyDictionary.Add(1, "one");
MyDictionary.Add(0, "zero");
}
/// <summary>
/// To the verbal.
/// </summary>
/// <param name="value">The value.</param>
/// <returns></returns>
public static string ToVerbal(this int value)
{
return ToVerbal((long) value);
}
/// <summary>
/// To the verbal.
/// </summary>
/// <param name="value">The value.</param>
/// <returns></returns>
public static string ToVerbal(this long value)
{
if (value == 0)
return MyDictionary[value];
if (value < 0)
return $" negative {ToVerbal(Math.Abs(value))}";
var builder = new StringBuilder();
for (var i = 1000000000000000; i >= 1000; i = i/1000)
value = ConstructWord(value, builder, i);
value = ConstructWord(value, builder, 100);
for (var i = 90; i >= 20; i = i - 10)
value = ConstructWordForTwoDigit(value, builder, i);
if (MyDictionary.ContainsKey(value))
builder.AppendFormat("{0}" + MyDictionary[value], builder.Length > 0
? " "
: string.Empty);
return builder.ToString();
}
private static long ConstructWord(long value, StringBuilder builder, long key)
{
if (value >= key)
{
var unit = (int) (value/key);
value -= unit*key;
builder.AppendFormat(" {0} {1} " + MyDictionary[key], builder.Length > 0
? ", "
: string.Empty, ToVerbal(unit));
}
return value;
}
private static long ConstructWordForTwoDigit(long value, StringBuilder builder, long key)
{
if (value >= key)
{
value -= key;
builder.AppendFormat(" {0} " + MyDictionary[key], builder.Length > 0
? " "
: string.Empty);
}
return value;
}
}
I have user string interpolation which is only available in 4.6.1.
Use:
namespace ConsoleApplication3
{
class Program
{
static void Main(string[] args)
{
string s = Console.ReadLine();
ConvertMyword(int.Parse(s));
Console.Read();
}
static void ConvertMyword(int number)
{
int flag = 0;
int lflag = 0;
string words = String.Empty;
string[] places = { "ones", "ten", "hundred", "thousand", "ten thousand", "lacs", "tenlacs", "crore", "tencrore" };
string rawnumber = number.ToString();
char[] a = rawnumber.ToCharArray();
Array.Reverse(a);
for (int i = a.Length - 1; i >= 0; i--)
{
if (i % 2 == 0 && i > 2)
{
if (int.Parse(a[i].ToString()) > 1)
{
if (int.Parse(a[i - 1].ToString()) == 0)
{
words = words + getNumberStringty(int.Parse(a[i].ToString())) + " " + places[i - 1] + " ";
}
else
{
words = words + getNumberStringty(int.Parse(a[i].ToString())) + " ";
}
}
else if (int.Parse(a[i].ToString()) == 1)
{
if (int.Parse(a[i - 1].ToString())== 0)
{
words = words + "Ten" + " ";
}
else
{
words = words + getNumberStringteen(int.Parse(a[i - 1].ToString())) + " ";
}
flag = 1;
}
}
else
{
if (i == 1 || i == 0)
{
if (int.Parse(a[i].ToString()) > 1)
{
words = words + getNumberStringty(int.Parse(a[i].ToString())) + " " + getNumberString(int.Parse(a[0].ToString())) + " ";
break;
}
else if (int.Parse(a[i].ToString()) == 1)
{
if (int.Parse(a[i - 1].ToString()) == 0)
{
words = words + "Ten" + " ";
}
else
{
words = words + getNumberStringteen(int.Parse(a[i - 1].ToString())) + " ";
}
break;
}
else if (int.Parse(a[i - 1].ToString()) != 0)
{
words = words + getNumberString(int.Parse(a[i - 1].ToString())) + " ";
break;
}
else
{
break;
}
}
else
{
if (flag == 0)
{
for(int l=i; l>=0; l--)
{
if (int.Parse(a[l].ToString()) != 0)
{
lflag = 1;
}
}
if (lflag == 1 && int.Parse(a[i].ToString()) != 0)
{
words = words + getNumberString(int.Parse(a[i].ToString())) + " " + places[i] + " ";
lflag = 0;
}
else if(lflag == 0)
{
//words = words + getNumberString(int.Parse(a[i].ToString())) + " " + places[i] + " ";
lflag = 0;
break;
}
}
else
{
words = words + " " + places[i] + " ";
flag = 0;
}
}
}
}
Console.WriteLine(words);
}
static string getNumberString(int num)
{
string Word = String.Empty;
switch (num)
{
case 1:
Word = "one";
break;
case 2:
Word = "two";
break;
case 3:
Word = "three";
break;
case 4:
Word = "four";
break;
case 5:
Word = "five";
break;
case 6:
Word = "six";
break;
case 7:
Word = "seven";
break;
case 8:
Word = "eight";
break;
case 9:
Word = "nine";
break;
}
return Word;
}
static string getNumberStringty(int num)
{
string Word = String.Empty;
switch (num)
{
case 2:
Word = "twenty";
break;
case 3:
Word = "thirty";
break;
case 4:
Word = "fourty";
break;
case 5:
Word = "fifty";
break;
case 6:
Word = "sixty";
break;
case 7:
Word = "seventy";
break;
case 8:
Word = "eighty";
break;
case 9:
Word = "ninty";
break;
}
return Word;
}
static string getNumberStringteen(int num)
{
string Word = String.Empty;
switch (num)
{
case 1:
Word = "eleven";
break;
case 2:
Word = "tewlve";
break;
case 3:
Word = "thirteen";
break;
case 4:
Word = "fourteen";
break;
case 5:
Word = "fifteen";
break;
case 6:
Word = "sixteen";
break;
case 7:
Word = "seventeen";
break;
case 8:
Word = "eighteen";
break;
case 9:
Word = "ninteen";
break;
}
return Word;
}
}
}
This class converts a float or double (till 2 precision).
class ConversionClass
{
private static Dictionary<int, string> InitialNumbers = new Dictionary<int, string>();
private static Dictionary<int, string> MultipleOfTen = new Dictionary<int, string>();
private static Dictionary<int, string> MultipleOfHundered = new Dictionary<int, string>();
private static void InitializeStatic()
{
//InitialNumbers.Add(0, "zero");
InitialNumbers.Add(1, "one");
InitialNumbers.Add(2, "two");
InitialNumbers.Add(3, "three");
InitialNumbers.Add(4, "four");
InitialNumbers.Add(5, "five");
InitialNumbers.Add(6, "six");
InitialNumbers.Add(7, "seven");
InitialNumbers.Add(8, "eight");
InitialNumbers.Add(9, "nine");
InitialNumbers.Add(10, "ten");
InitialNumbers.Add(11, "eleven");
InitialNumbers.Add(12, "tweleve");
InitialNumbers.Add(13, "thirteen");
InitialNumbers.Add(14, "fourteen");
InitialNumbers.Add(15, "fifteen");
InitialNumbers.Add(16, "sixteen");
InitialNumbers.Add(17, "seventeen");
InitialNumbers.Add(18, "eighteen");
InitialNumbers.Add(19, "nineteen");
MultipleOfTen.Add(1, "ten");
MultipleOfTen.Add(2, "twenty");
MultipleOfTen.Add(3, "thirty");
MultipleOfTen.Add(4, "fourty");
MultipleOfTen.Add(5, "fifty");
MultipleOfTen.Add(6, "sixty");
MultipleOfTen.Add(7, "seventy");
MultipleOfTen.Add(8, "eighty");
MultipleOfTen.Add(9, "ninety");
MultipleOfHundered.Add(2, "hundred"); // 100
MultipleOfHundered.Add(3, "thousand"); // 1 000
MultipleOfHundered.Add(4, "thousand"); // 10 000
MultipleOfHundered.Add(5, "thousand"); // 100 000
MultipleOfHundered.Add(6, "million"); // 1 000 000
MultipleOfHundered.Add(7, "million"); // 100 000 000
MultipleOfHundered.Add(8, "million"); // 1 000 000 000
MultipleOfHundered.Add(9, "billion"); // 1 000 000 000 000
}
public static void Main()
{
InitializeStatic();
Console.WriteLine("Enter number: ");
var userInput = Console.ReadLine();
double userValue;
if (double.TryParse(userInput, out userValue)) // userValue = 193524019.50
{
int decimalPortion = (int)userValue;
//var fractionPortion = Math.Ceiling(((userValue < 1.0) ? userValue : (userValue % Math.Floor(userValue))) * 100);
int fractionPortion = (int)(userValue * 100) - ((int)userValue * 100);
int digit; int power;
StringBuilder numberInText = new StringBuilder();
while (decimalPortion > 0)
{
GetDigitAndPower(decimalPortion, out digit, out power);
numberInText.Append(ConvertToText(ref decimalPortion, ref digit, ref power));
if (decimalPortion > 0)
{
decimalPortion = GetReminder(decimalPortion, digit, power);
}
}
numberInText.Append(" point ");
while (fractionPortion > 0)
{
GetDigitAndPower(fractionPortion, out digit, out power);
numberInText.Append(ConvertToText(ref fractionPortion, ref digit, ref power));
if (fractionPortion > 0)
{
fractionPortion = GetReminder(fractionPortion, digit, power);
}
}
Console.WriteLine(numberInText.ToString());
}
Console.ReadKey();
}
private static int GetReminder(int orgValue, int digit, int power)
{
int returningValue = orgValue - (digit * (int)Math.Pow(10, power));
return returningValue;
}
private static void GetDigitAndPower(int originalValue, out int digit, out int power)
{
for (power = 0, digit = 0; power < 10; power++)
{
var divisionFactor = (int)Math.Pow(10, power);
int operationalValue = (originalValue / divisionFactor);
if (operationalValue <= 0)
{
power = power - 1;
digit = (int)(originalValue / Math.Pow(10, power));
break;
}
}
}
private static string ConvertToText(ref int orgValue, ref int digit, ref int power)
{
string numberToText = string.Empty;
if (power < 2)
{
if (InitialNumbers.ContainsKey(orgValue))
{
// This is for number 1 to 19
numberToText = InitialNumbers[orgValue];
orgValue = 0;
}
else if (MultipleOfTen.ContainsKey(digit))
{
// This is for multiple of 10 (20, 30, .. 90)
numberToText = MultipleOfTen[digit];
}
}
else
{
if (power < 4)
{
numberToText = string.Format("{0} {1}", InitialNumbers[digit], MultipleOfHundered[power]);
}
else
{
StringBuilder sb = new StringBuilder();
int multiplicationFactor = power / 3;
int innerOrgValue = (int) (orgValue / Math.Pow(10, (multiplicationFactor * 3)));
digit = innerOrgValue;
var multiple = MultipleOfHundered[power];
power = power - ((int)Math.Ceiling(Math.Log10(innerOrgValue)) - 1);
int innerPower = 0;
int innerDigit = 0;
while (innerOrgValue > 0)
{
GetDigitAndPower(innerOrgValue, out innerDigit, out innerPower);
var text = ConvertToText(ref innerOrgValue, ref innerDigit, ref innerPower);
sb.Append(text);
sb.Append(" ");
if (innerOrgValue > 0)
{
innerOrgValue = GetReminder(innerOrgValue, innerDigit, innerPower);
}
}
sb.Append(multiple);
numberToText = sb.ToString();
}
}
return numberToText + " ";
}
}
The following C# console app code accepts a monetary value in numbers up to 2 decimals and prints it in English. You can use it as a reference.
namespace ConsoleApplication2
{
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text.RegularExpressions;
class Program
{
static void Main(string[] args)
{
bool repeat = true;
while (repeat)
{
string inputMonetaryValueInNumberic = string.Empty;
string centPart = string.Empty;
string dollarPart = string.Empty;
Console.Write("\nEnter the monetary value : ");
inputMonetaryValueInNumberic = Console.ReadLine();
inputMonetaryValueInNumberic = inputMonetaryValueInNumberic.TrimStart('0');
if (ValidateInput(inputMonetaryValueInNumberic))
{
if (inputMonetaryValueInNumberic.Contains('.'))
{
centPart = ProcessCents(inputMonetaryValueInNumberic.Substring(inputMonetaryValueInNumberic.IndexOf(".") + 1));
dollarPart = ProcessDollar(inputMonetaryValueInNumberic.Substring(0, inputMonetaryValueInNumberic.IndexOf(".")));
}
else
{
dollarPart = ProcessDollar(inputMonetaryValueInNumberic);
}
centPart = string.IsNullOrWhiteSpace(centPart) ? string.Empty : " and " + centPart;
Console.WriteLine(string.Format("\n\n{0}{1}", dollarPart, centPart));
}
else
{
Console.WriteLine("Invalid Input..");
}
Console.WriteLine("\n\nPress any key to continue or Escape of close : ");
var loop = Console.ReadKey();
repeat = !loop.Key.ToString().Contains("Escape");
Console.Clear();
}
}
private static string ProcessCents(string cents)
{
string english = string.Empty;
string dig3 = Process3Digit(cents);
if (!string.IsNullOrWhiteSpace(dig3))
{
dig3 = string.Format("{0} {1}", dig3, GetSections(0));
}
english = dig3 + english;
return english;
}
private static string ProcessDollar(string dollar)
{
string english = string.Empty;
foreach (var item in Get3DigitList(dollar))
{
string dig3 = Process3Digit(item.Value);
if (!string.IsNullOrWhiteSpace(dig3))
{
dig3 = string.Format("{0} {1}", dig3, GetSections(item.Key));
}
english = dig3 + english;
}
return english;
}
private static string Process3Digit(string digit3)
{
string result = string.Empty;
if (Convert.ToInt32(digit3) != 0)
{
int place = 0;
Stack<string> monetaryValue = new Stack<string>();
for (int i = digit3.Length - 1; i >= 0; i--)
{
place += 1;
string stringValue = string.Empty;
switch (place)
{
case 1:
stringValue = GetOnes(digit3[i].ToString());
break;
case 2:
int tens = Convert.ToInt32(digit3[i]);
if (tens == 1)
{
if (monetaryValue.Count > 0)
{
monetaryValue.Pop();
}
stringValue = GetTens((digit3[i].ToString() + digit3[i + 1].ToString()));
}
else
{
stringValue = GetTens(digit3[i].ToString());
}
break;
case 3:
stringValue = GetOnes(digit3[i].ToString());
if (!string.IsNullOrWhiteSpace(stringValue))
{
string postFixWith = " Hundred";
if (monetaryValue.Count > 0)
{
postFixWith = postFixWith + " And";
}
stringValue += postFixWith;
}
break;
}
if (!string.IsNullOrWhiteSpace(stringValue))
monetaryValue.Push(stringValue);
}
while (monetaryValue.Count > 0)
{
result += " " + monetaryValue.Pop().ToString().Trim();
}
}
return result;
}
private static Dictionary<int, string> Get3DigitList(string monetaryValueInNumberic)
{
Dictionary<int, string> hundredsStack = new Dictionary<int, string>();
int counter = 0;
while (monetaryValueInNumberic.Length >= 3)
{
string digit3 = monetaryValueInNumberic.Substring(monetaryValueInNumberic.Length - 3, 3);
monetaryValueInNumberic = monetaryValueInNumberic.Substring(0, monetaryValueInNumberic.Length - 3);
hundredsStack.Add(++counter, digit3);
}
if (monetaryValueInNumberic.Length != 0)
hundredsStack.Add(++counter, monetaryValueInNumberic);
return hundredsStack;
}
private static string GetTens(string tensPlaceValue)
{
string englishEquvalent = string.Empty;
int value = Convert.ToInt32(tensPlaceValue);
Dictionary<int, string> tens = new Dictionary<int, string>();
tens.Add(2, "Twenty");
tens.Add(3, "Thirty");
tens.Add(4, "Forty");
tens.Add(5, "Fifty");
tens.Add(6, "Sixty");
tens.Add(7, "Seventy");
tens.Add(8, "Eighty");
tens.Add(9, "Ninty");
tens.Add(10, "Ten");
tens.Add(11, "Eleven");
tens.Add(12, "Twelve");
tens.Add(13, "Thrteen");
tens.Add(14, "Fourteen");
tens.Add(15, "Fifteen");
tens.Add(16, "Sixteen");
tens.Add(17, "Seventeen");
tens.Add(18, "Eighteen");
tens.Add(19, "Ninteen");
if (tens.ContainsKey(value))
{
englishEquvalent = tens[value];
}
return englishEquvalent;
}
private static string GetOnes(string onesPlaceValue)
{
int value = Convert.ToInt32(onesPlaceValue);
string englishEquvalent = string.Empty;
Dictionary<int, string> ones = new Dictionary<int, string>();
ones.Add(1, " One");
ones.Add(2, " Two");
ones.Add(3, " Three");
ones.Add(4, " Four");
ones.Add(5, " Five");
ones.Add(6, " Six");
ones.Add(7, " Seven");
ones.Add(8, " Eight");
ones.Add(9, " Nine");
if (ones.ContainsKey(value))
{
englishEquvalent = ones[value];
}
return englishEquvalent;
}
private static string GetSections(int section)
{
string sectionName = string.Empty;
switch (section)
{
case 0:
sectionName = "Cents";
break;
case 1:
sectionName = "Dollars";
break;
case 2:
sectionName = "Thousand";
break;
case 3:
sectionName = "Million";
break;
case 4:
sectionName = "Billion";
break;
case 5:
sectionName = "Trillion";
break;
case 6:
sectionName = "Zillion";
break;
}
return sectionName;
}
private static bool ValidateInput(string input)
{
return Regex.IsMatch(input, "[0-9]{1,18}(\\.[0-9]{1,2})?"))
}
}
}
A solution that takes up less code.
The most important part is only a couple of lines:
static Func<long, string> remainder = t => t > 0 ? " " + ToEN(t) : "";
public static string ToEN(this long val, double d = 20, long th = 20)
{
switch ((long)d)
{
case 20: return val >= d ? ToEN(val, 1e2) : en[val];
case 100: return val >= d ? ToEN(val, 1e3, 100) : en[val / 10 * 10] + remainder(val % 10);
default: return val >= d ? ToEN(val, d * 1e3,(long)d) : ToEN(val / th) + " " + en[th] + remainder(val % th);
}
}
Full code is available at https://dotnetfiddle.net/wjr4hF.
© 2022 - 2024 — McMap. All rights reserved.