A solution (the best if you have repeated value of x) would be to memoize the function f, i.e. to create a wrapper function that saves the argument by which the function is called and save it, than return it if the same value is asked.
a really simple implementation is the following:
storage = {}
def memoized(value):
if value not in storage:
storage[value] = f(value)
return storage[value]
[memoized(x) for x in l if memoized(x)]
and then use this function in the list comprehension. This approach is valid under two condition, one theoretical and one practical. The first one is that the function f should be deterministic, i.e. returns the same results given the same input, and the other is that the object x can be used as a dictionary keys. If the first one is not valid than you should recompute f each timeby definition, while if the second one fails it is possible to use some slightly more robust approaches.
You can find a lot of implementation of memoization around the net, and I think that the new versions of python have something included in them too.
On a side note, never use the small L as a variable name, is a bad habit as it can be confused with an i or a 1 on some terminals.
EDIT:
as commented, a possible solution using generators comprehension (to avoid creating useless duplicate temporaries) would be this expression:
[g(x, fx) for x, fx in ((x,f(x)) for x in l) if fx]
You need to weight your choice given the computational cost of f, the number of duplication in the original list and memory at you disposition. Memoization make a space-speed tradeoff, meaning that it keep tracks of each result saving it, so if you have huge lists it can became costly on the memory occupation front.
[g(x, fx) for x, fx in ((x,f(x)) for x in l) if fx]
. the main point is if there is any duplication in x. – Lupus