When I use the following code with Data matrix X
of size (952,144) and output vector y
of size (952), mean_squared_error
metric returns negative values, which is unexpected. Do you have any idea?
from sklearn.svm import SVR
from sklearn import cross_validation as CV
reg = SVR(C=1., epsilon=0.1, kernel='rbf')
scores = CV.cross_val_score(reg, X, y, cv=10, scoring='mean_squared_error')
all values in scores
are then negative.