If the array is two-dimensional, one needs to pay attention to the storage order. By default, Eigen stores matrices in column-major order. However, a row-major order is needed for the direct conversion of an array into an Eigen matrix. If such conversions are performed frequently in the code, it might be helpful to use a corresponding typedef
.
using namespace Eigen;
typedef Matrix<int, Dynamic, Dynamic, RowMajor> RowMatrixXi;
With such a definition one can obtain an Eigen matrix from an array in a simple and compact way, while preserving the order of the original array.
From C array to Eigen::Matrix
int nrow = 2, ncol = 3;
int arr[nrow][ncol] = { {1 ,2, 3}, {4, 5, 6} };
Map<RowMatrixXi> eig(&arr[0][0], nrow, ncol);
std::cout << "Eigen matrix:\n" << eig << std::endl;
// Eigen matrix:
// 1 2 3
// 4 5 6
In the opposite direction, the elements of an Eigen matrix can be transferred directly to a C-style array by using Map
.
From Eigen::Matrix to C array
int arr2[nrow][ncol];
Map<RowMatrixXi>(&arr2[0][0], nrow, ncol) = eig;
std::cout << "C array:\n";
for (int i = 0; i < nrow; ++i) {
for (int j = 0; j < ncol; ++j) {
std::cout << arr2[i][j] << " ";
}
std::cout << "\n";
}
// C array:
// 1 2 3
// 4 5 6
Note that in this case the original matrix eig
does not need to be stored in row-major layout. It is sufficient to specify the row-major order in Map
.