Strange OutOfMemory issue while loading an image to a Bitmap object
Asked Answered
H

44

1389

I have a ListView with a couple of image buttons on each row. When the user clicks the list row, it launches a new activity. I have had to build my own tabs because of an issue with the camera layout. The activity that gets launched for the result is a map. If I click on my button to launch the image preview (load an image off the SD card) the application returns from the activity back to the ListView activity to the result handler to relaunch my new activity which is nothing more than an image widget.

The image preview on the ListView is being done with the cursor and ListAdapter. This makes it pretty simple, but I am not sure how I can put a resized image (I.e. Smaller bit size not pixel as the src for the image button on the fly. So I just resized the image that came off the phone camera.

The issue is that I get an OutOfMemoryError when it tries to go back and re-launch the 2nd activity.

  • Is there a way I can build the list adapter easily row by row, where I can resize on the fly (bitwise)?

This would be preferable as I also need to make some changes to the properties of the widgets/elements in each row as I am unable to select a row with the touch screen because of the focus issue. (I can use rollerball.)

  • I know I can do an out of band resize and save my image, but that is not really what I want to do, but some sample code for that would be nice.

As soon as I disabled the image on the ListView it worked fine again.

FYI: This is how I was doing it:

String[] from = new String[] { DBHelper.KEY_BUSINESSNAME, DBHelper.KEY_ADDRESS,
    DBHelper.KEY_CITY, DBHelper.KEY_GPSLONG, DBHelper.KEY_GPSLAT,
    DBHelper.KEY_IMAGEFILENAME  + ""};
int[] to = new int[] { R.id.businessname, R.id.address, R.id.city, R.id.gpslong,
    R.id.gpslat, R.id.imagefilename };
notes = new SimpleCursorAdapter(this, R.layout.notes_row, c, from, to);
setListAdapter(notes);

Where R.id.imagefilename is a ButtonImage.

Here is my LogCat:

01-25 05:05:49.877: ERROR/dalvikvm-heap(3896): 6291456-byte external allocation too large for this process.
01-25 05:05:49.877: ERROR/(3896): VM wont let us allocate 6291456 bytes
01-25 05:05:49.877: ERROR/AndroidRuntime(3896): Uncaught handler: thread main exiting due to uncaught exception
01-25 05:05:49.917: ERROR/AndroidRuntime(3896): java.lang.OutOfMemoryError: bitmap size exceeds VM budget
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.graphics.BitmapFactory.nativeDecodeStream(Native Method)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.graphics.BitmapFactory.decodeStream(BitmapFactory.java:304)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.graphics.BitmapFactory.decodeFile(BitmapFactory.java:149)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.graphics.BitmapFactory.decodeFile(BitmapFactory.java:174)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.graphics.drawable.Drawable.createFromPath(Drawable.java:729)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.ImageView.resolveUri(ImageView.java:484)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.ImageView.setImageURI(ImageView.java:281)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.SimpleCursorAdapter.setViewImage(SimpleCursorAdapter.java:183)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.SimpleCursorAdapter.bindView(SimpleCursorAdapter.java:129)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.CursorAdapter.getView(CursorAdapter.java:150)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.AbsListView.obtainView(AbsListView.java:1057)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.ListView.makeAndAddView(ListView.java:1616)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.ListView.fillSpecific(ListView.java:1177)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.ListView.layoutChildren(ListView.java:1454)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.AbsListView.onLayout(AbsListView.java:937)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.View.layout(View.java:5611)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1119)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.LinearLayout.layoutHorizontal(LinearLayout.java:1108)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.LinearLayout.onLayout(LinearLayout.java:922)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.View.layout(View.java:5611)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.FrameLayout.onLayout(FrameLayout.java:294)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.View.layout(View.java:5611)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.LinearLayout.setChildFrame(LinearLayout.java:1119)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.LinearLayout.layoutVertical(LinearLayout.java:999)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.LinearLayout.onLayout(LinearLayout.java:920)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.View.layout(View.java:5611)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.widget.FrameLayout.onLayout(FrameLayout.java:294)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.View.layout(View.java:5611)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.ViewRoot.performTraversals(ViewRoot.java:771)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.view.ViewRoot.handleMessage(ViewRoot.java:1103)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.os.Handler.dispatchMessage(Handler.java:88)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.os.Looper.loop(Looper.java:123)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at android.app.ActivityThread.main(ActivityThread.java:3742)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at java.lang.reflect.Method.invokeNative(Native Method)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at java.lang.reflect.Method.invoke(Method.java:515)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:739)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:497)
01-25 05:05:49.917: ERROR/AndroidRuntime(3896):     at dalvik.system.NativeStart.main(Native Method)
01-25 05:10:01.127: ERROR/AndroidRuntime(3943): ERROR: thread attach failed 

I also have a new error when displaying an image:

22:13:18.594: DEBUG/skia(4204): xxxxxxxxxxx jpeg error 20 Improper call to JPEG library in state %d
22:13:18.604: INFO/System.out(4204): resolveUri failed on bad bitmap uri: 
22:13:18.694: ERROR/dalvikvm-heap(4204): 6291456-byte external allocation too large for this process.
22:13:18.694: ERROR/(4204): VM won't let us allocate 6291456 bytes
22:13:18.694: DEBUG/skia(4204): xxxxxxxxxxxxxxxxxxxx allocPixelRef failed
Heartburning answered 25/1, 2009 at 11:23 Comment(8)
I solved this by avoiding Bitmap.decodeStream or decodeFile and using BitmapFactory.decodeFileDescriptor method.Rimester
I Also faced similar issue couple of weeks back and i solved it by scaling down images upto optimal point. I have written complete approach in my blog codingjunkiesforum.wordpress.com/2014/06/12/… and uploaded complete sample project with OOM prone code vs OOM Proof code athttps://github.com/shailendra123/BitmapHandlingDemoHarrovian
Full solution .. https://mcmap.net/q/27091/-mediastore-images-media-getbitmap-and-out-of-memory-errorDecrepitude
The accepted answer on this question is being discussed on metaAlena
Read this blogPOst codingaffairs.blogspot.com/2016/07/…Senaidasenalda
This happens because of bad android architecture. It should resize images itself like ios and UWP does this. I don't have to do this stuff myself. Android developers get used to that hell and think it works the way it should.Huffy
The last time I touched Android (years ago), this was still an unsolved problem, even WITH resampling, caching, manual recycling, gc() and larger heap sizes - they just push the problem further back and can't all be always used: stackoverflow.com/questions/8240502 and can't be fixed because Bitmap is a final class.Sweeny
@Sweeny Not seeing any issues with this anymore.. Actually since learning this, I have not experienced any OOM on Android...Heartburning
L
692

The Android Training class, "Displaying Bitmaps Efficiently", offers some great information for understanding and dealing with the exception `java.lang.OutOfMemoryError: bitmap size exceeds VM budget when loading Bitmaps.


Read Bitmap Dimensions and Type

The BitmapFactory class provides several decoding methods (decodeByteArray(), decodeFile(), decodeResource(), etc.) for creating a Bitmap from various sources. Choose the most appropriate decode method based on your image data source. These methods attempt to allocate memory for the constructed bitmap and therefore can easily result in an OutOfMemory exception. Each type of decode method has additional signatures that let you specify decoding options via the BitmapFactory.Options class. Setting the inJustDecodeBounds property to true while decoding avoids memory allocation, returning null for the bitmap object but setting outWidth, outHeight and outMimeType. This technique allows you to read the dimensions and type of the image data prior to the construction (and memory allocation) of the bitmap.

BitmapFactory.Options options = new BitmapFactory.Options();
options.inJustDecodeBounds = true;
BitmapFactory.decodeResource(getResources(), R.id.myimage, options);
int imageHeight = options.outHeight;
int imageWidth = options.outWidth;
String imageType = options.outMimeType;

To avoid java.lang.OutOfMemory exceptions, check the dimensions of a bitmap before decoding it unless you absolutely trust the source to provide you with predictably sized image data that comfortably fits within the available memory.


Load a scaled-down version into Memory

Now that the image dimensions are known, they can be used to decide if the full image should be loaded into memory or if a subsampled version should be loaded instead. Here are some factors to consider:

  • Estimated memory usage of loading the full image in memory.
  • The amount of memory you are willing to commit to loading this image given any other memory requirements of your application.
  • Dimensions of the target ImageView or UI component that the image is to be loaded into.
  • Screen size and density of the current device.

For example, it’s not worth loading a 1024x768 pixel image into memory if it will eventually be displayed in a 128x96 pixel thumbnail in an ImageView.

To tell the decoder to subsample the image, loading a smaller version into memory, set inSampleSize to true in your BitmapFactory.Options object. For example, an image with resolution 2048x1536 that is decoded with an inSampleSize of 4 produces a bitmap of approximately 512x384. Loading this into memory uses 0.75MB rather than 12MB for the full image (assuming a bitmap configuration of ARGB_8888). Here’s a method to calculate a sample size value that is a power of two based on a target width and height:

public static int calculateInSampleSize(
        BitmapFactory.Options options, int reqWidth, int reqHeight) {
    // Raw height and width of image
    final int height = options.outHeight;
    final int width = options.outWidth;
    int inSampleSize = 1;

    if (height > reqHeight || width > reqWidth) {

        final int halfHeight = height / 2;
        final int halfWidth = width / 2;

        // Calculate the largest inSampleSize value that is a power of 2 and keeps both
        // height and width larger than the requested height and width.
        while ((halfHeight / inSampleSize) > reqHeight
                && (halfWidth / inSampleSize) > reqWidth) {
            inSampleSize *= 2;
        }
    }

    return inSampleSize;
}

Note: A power of two value is calculated because the decoder uses a final value by rounding down to the nearest power of two, as per the inSampleSize documentation.

To use this method, first decode with inJustDecodeBounds set to true, pass the options through and then decode again using the new inSampleSizevalue andinJustDecodeBoundsset tofalse`:

public static Bitmap decodeSampledBitmapFromResource(Resources res, int resId,
    int reqWidth, int reqHeight) {

    // First decode with inJustDecodeBounds=true to check dimensions
    final BitmapFactory.Options options = new BitmapFactory.Options();
    options.inJustDecodeBounds = true;
    BitmapFactory.decodeResource(res, resId, options);

    // Calculate inSampleSize
    options.inSampleSize = calculateInSampleSize(options, reqWidth, reqHeight);

    // Decode bitmap with inSampleSize set
    options.inJustDecodeBounds = false;
    return BitmapFactory.decodeResource(res, resId, options);
}

This method makes it easy to load a bitmap of arbitrarily large size into an ImageView that displays a 100x100 pixel thumbnail, as shown in the following example code:

mImageView.setImageBitmap(
    decodeSampledBitmapFromResource(getResources(), R.id.myimage, 100, 100));

You can follow a similar process to decode bitmaps from other sources, by substituting the appropriate BitmapFactory.decode* method as needed.

Lignin answered 25/1, 2009 at 11:23 Comment(4)
This answer is being discussed on metaAlena
This answer (except the information reached through the link) do not offer much of a solution as for an answer. The important parts of the link should be merged into the question.Blowing
This answer, like the question and the other answers are Community Wiki, so this is something the community can fix by editing, something that does not require moderator intervention.Saleme
Really helpful in 2022.. Trying to run an app on an old HTC One S. 31mb image in a memory stream is too much lol.Ordinarily
I
921

To fix the OutOfMemory error, you should do something like this:

BitmapFactory.Options options = new BitmapFactory.Options();
options.inSampleSize = 8;
Bitmap preview_bitmap = BitmapFactory.decodeStream(is, null, options);

This inSampleSize option reduces memory consumption.

Here's a complete method. First it reads image size without decoding the content itself. Then it finds the best inSampleSize value, it should be a power of 2, and finally the image is decoded.

// Decodes image and scales it to reduce memory consumption
private Bitmap decodeFile(File f) {
    try {
        // Decode image size
        BitmapFactory.Options o = new BitmapFactory.Options();
        o.inJustDecodeBounds = true;
        BitmapFactory.decodeStream(new FileInputStream(f), null, o);

        // The new size we want to scale to
        final int REQUIRED_SIZE=70;

        // Find the correct scale value. It should be the power of 2.
        int scale = 1;
        while(o.outWidth / scale / 2 >= REQUIRED_SIZE && 
              o.outHeight / scale / 2 >= REQUIRED_SIZE) {
            scale *= 2;
        }

        // Decode with inSampleSize
        BitmapFactory.Options o2 = new BitmapFactory.Options();
        o2.inSampleSize = scale;
        return BitmapFactory.decodeStream(new FileInputStream(f), null, o2);
    } catch (FileNotFoundException e) {}
    return null;
}
Independence answered 25/1, 2009 at 11:23 Comment(10)
Note that 10 may not be the best value for inSampleSize though, the documentation suggests using powers of 2.Guardian
I'm facing the same problem as Chrispix, but I don't think the solution here really solves the problem, but rather sidesteps it. Changing the sample size reduces the amount of memory used (at the cost of image quality, which is probably okay for an image preview), but it will not prevent the exception if a large enough image stream is decoded, of if multiple image streams are decoded. If I find a better solution (and there may not be one) I'll post an answer here.Weigh
You only need an appropriate size to match the screen in pixel density, for zooming in and such you can take a sample of the image at a higher density.Opaque
Can anyone explain what the REQUIRED_SIZE corresponds to? Is that pixels of one side, dips? Thanks!Bithia
REQUIRED_SIZE is the new size you want to scale to.Independence
Since you're doing powers of 2, instead of scale *=2, you should do scale >> 2. For divide, you can do scale << 2.Penutian
Great answer! But how do you get REQUIRED_SIZE dynamically at runtime (catering for different size displays)? This must be done once the View is being drawn but before the Bitmap is expanded.Idealistic
this solution helped me but the image quality is terrible. I am using a viewfilpper to display the images any suggestions?Orchardman
I usually set options.inPreferredConfig = Bitmap.Config.ALPHA_8;. With this setting, each pixcel will be save by 1 byte instead of 4 bytes as default.Backus
@Dopyiii FYI *=2 is equivalent to >> 1, not >> 2Fluorene
L
692

The Android Training class, "Displaying Bitmaps Efficiently", offers some great information for understanding and dealing with the exception `java.lang.OutOfMemoryError: bitmap size exceeds VM budget when loading Bitmaps.


Read Bitmap Dimensions and Type

The BitmapFactory class provides several decoding methods (decodeByteArray(), decodeFile(), decodeResource(), etc.) for creating a Bitmap from various sources. Choose the most appropriate decode method based on your image data source. These methods attempt to allocate memory for the constructed bitmap and therefore can easily result in an OutOfMemory exception. Each type of decode method has additional signatures that let you specify decoding options via the BitmapFactory.Options class. Setting the inJustDecodeBounds property to true while decoding avoids memory allocation, returning null for the bitmap object but setting outWidth, outHeight and outMimeType. This technique allows you to read the dimensions and type of the image data prior to the construction (and memory allocation) of the bitmap.

BitmapFactory.Options options = new BitmapFactory.Options();
options.inJustDecodeBounds = true;
BitmapFactory.decodeResource(getResources(), R.id.myimage, options);
int imageHeight = options.outHeight;
int imageWidth = options.outWidth;
String imageType = options.outMimeType;

To avoid java.lang.OutOfMemory exceptions, check the dimensions of a bitmap before decoding it unless you absolutely trust the source to provide you with predictably sized image data that comfortably fits within the available memory.


Load a scaled-down version into Memory

Now that the image dimensions are known, they can be used to decide if the full image should be loaded into memory or if a subsampled version should be loaded instead. Here are some factors to consider:

  • Estimated memory usage of loading the full image in memory.
  • The amount of memory you are willing to commit to loading this image given any other memory requirements of your application.
  • Dimensions of the target ImageView or UI component that the image is to be loaded into.
  • Screen size and density of the current device.

For example, it’s not worth loading a 1024x768 pixel image into memory if it will eventually be displayed in a 128x96 pixel thumbnail in an ImageView.

To tell the decoder to subsample the image, loading a smaller version into memory, set inSampleSize to true in your BitmapFactory.Options object. For example, an image with resolution 2048x1536 that is decoded with an inSampleSize of 4 produces a bitmap of approximately 512x384. Loading this into memory uses 0.75MB rather than 12MB for the full image (assuming a bitmap configuration of ARGB_8888). Here’s a method to calculate a sample size value that is a power of two based on a target width and height:

public static int calculateInSampleSize(
        BitmapFactory.Options options, int reqWidth, int reqHeight) {
    // Raw height and width of image
    final int height = options.outHeight;
    final int width = options.outWidth;
    int inSampleSize = 1;

    if (height > reqHeight || width > reqWidth) {

        final int halfHeight = height / 2;
        final int halfWidth = width / 2;

        // Calculate the largest inSampleSize value that is a power of 2 and keeps both
        // height and width larger than the requested height and width.
        while ((halfHeight / inSampleSize) > reqHeight
                && (halfWidth / inSampleSize) > reqWidth) {
            inSampleSize *= 2;
        }
    }

    return inSampleSize;
}

Note: A power of two value is calculated because the decoder uses a final value by rounding down to the nearest power of two, as per the inSampleSize documentation.

To use this method, first decode with inJustDecodeBounds set to true, pass the options through and then decode again using the new inSampleSizevalue andinJustDecodeBoundsset tofalse`:

public static Bitmap decodeSampledBitmapFromResource(Resources res, int resId,
    int reqWidth, int reqHeight) {

    // First decode with inJustDecodeBounds=true to check dimensions
    final BitmapFactory.Options options = new BitmapFactory.Options();
    options.inJustDecodeBounds = true;
    BitmapFactory.decodeResource(res, resId, options);

    // Calculate inSampleSize
    options.inSampleSize = calculateInSampleSize(options, reqWidth, reqHeight);

    // Decode bitmap with inSampleSize set
    options.inJustDecodeBounds = false;
    return BitmapFactory.decodeResource(res, resId, options);
}

This method makes it easy to load a bitmap of arbitrarily large size into an ImageView that displays a 100x100 pixel thumbnail, as shown in the following example code:

mImageView.setImageBitmap(
    decodeSampledBitmapFromResource(getResources(), R.id.myimage, 100, 100));

You can follow a similar process to decode bitmaps from other sources, by substituting the appropriate BitmapFactory.decode* method as needed.

Lignin answered 25/1, 2009 at 11:23 Comment(4)
This answer is being discussed on metaAlena
This answer (except the information reached through the link) do not offer much of a solution as for an answer. The important parts of the link should be merged into the question.Blowing
This answer, like the question and the other answers are Community Wiki, so this is something the community can fix by editing, something that does not require moderator intervention.Saleme
Really helpful in 2022.. Trying to run an app on an old HTC One S. 31mb image in a memory stream is too much lol.Ordinarily
K
383

I've made a small improvement to Fedor's code. It basically does the same, but without the (in my opinion) ugly while loop and it always results in a power of two. Kudos to Fedor for making the original solution, I was stuck until I found his, and then I was able to make this one :)

 private Bitmap decodeFile(File f){
    Bitmap b = null;

        //Decode image size
    BitmapFactory.Options o = new BitmapFactory.Options();
    o.inJustDecodeBounds = true;

    FileInputStream fis = new FileInputStream(f);
    BitmapFactory.decodeStream(fis, null, o);
    fis.close();

    int scale = 1;
    if (o.outHeight > IMAGE_MAX_SIZE || o.outWidth > IMAGE_MAX_SIZE) {
        scale = (int)Math.pow(2, (int) Math.ceil(Math.log(IMAGE_MAX_SIZE / 
           (double) Math.max(o.outHeight, o.outWidth)) / Math.log(0.5)));
    }

    //Decode with inSampleSize
    BitmapFactory.Options o2 = new BitmapFactory.Options();
    o2.inSampleSize = scale;
    fis = new FileInputStream(f);
    b = BitmapFactory.decodeStream(fis, null, o2);
    fis.close();

    return b;
}
Keramics answered 25/1, 2009 at 11:23 Comment(6)
Yes you're right while is not so beautiful. I just tried to make it clear to everyone. Thanks for your code.Independence
@Thomas Vervest - There's a big problem with that code. ^ doesn't raise 2 to a power, it xors 2 with the result. You want Math.pow(2.0, ...). Otherwise, this looks good.Gunwale
Ooh, that's a very good one! My bad, I'll correct it immediately, thanks for the reply!Keramics
You are creating two new FileInputStreams, one for each call to the BitmapFactory.decodeStream(). Don't you have to save a reference to each of them so that they can be closed in a finally block?Middleclass
@Babibu The documentation doesn't state that the stream is closed for you, therefore I assume it should still be closed. An interesting, and related, discussion can be found here. Note the comment by Adrian Smith, which relates directly to our debate.Keramics
Helpful in 2022. Trying to run an app on an HTC One S. Cant load 31mb stream lol, this did the trick, as I am compressing images already to upload to a ML api.Ordinarily
C
238

I come from iOS experience and I was frustrated to discover an issue with something so basic as loading and showing an image. After all, everyone that is having this issue is trying to display reasonably sized images. Anyway, here are the two changes that fixed my problem (and made my app very responsive).

1) Every time you do BitmapFactory.decodeXYZ(), make sure to pass in a BitmapFactory.Options with inPurgeable set to true (and preferably with inInputShareable also set to true).

2) NEVER use Bitmap.createBitmap(width, height, Config.ARGB_8888). I mean NEVER! I've never had that thing not raise memory error after few passes. No amount of recycle(), System.gc(), whatever helped. It always raised exception. The one other way that actually works is to have a dummy image in your drawables (or another Bitmap that you decoded using step 1 above), rescale that to whatever you want, then manipulate the resulting Bitmap (such as passing it on to a Canvas for more fun). So, what you should use instead is: Bitmap.createScaledBitmap(srcBitmap, width, height, false). If for whatever reason you MUST use the brute force create method, then at least pass Config.ARGB_4444.

This is almost guaranteed to save you hours if not days. All that talk about scaling the image, etc. does not really work (unless you consider getting wrong size or degraded image a solution).

Champignon answered 25/1, 2009 at 11:23 Comment(4)
BitmapFactory.Options options = new BitmapFactory.Options(); options.inPurgeable = true; and Bitmap.createScaledBitmap(srcBitmap, width, height, false); solved my issue I had with out of memory exception on android 4.0.0. Thanks mate!Dx
In Bitmap.createScaledBitmap() call you should probably use true as the flag parameter. Otherwise the quality of the image will not be smooth when scaling up. Check this thread #2895565Manse
That really is fabulous advice. Wish I could give you an extra +1 for taking Google to task for this amazingly rinky dink bug. I mean... if it's not a bug then the documentation really needs to have some seriously flashing neon signs saying "THIS IS HOW YOU PROCESS PHOTOS", cause I've been struggling with this for 2 years and just now found this post. Great find.Oppose
As of Lollipop, BitmapFactory.Options.inPurgeable and BitmapFactory.Options.inInputShareable are deprecated developer.android.com/reference/android/graphics/…Beacon
T
98

It's a known bug, it's not because of large files. Since Android Caches the Drawables, it's going out of memory after using few images. But I've found an alternate way for it, by skipping the android default cache system.

Solution: Move the images to "assets" folder and use the following function to get BitmapDrawable:

public static Drawable getAssetImage(Context context, String filename) throws IOException {
    AssetManager assets = context.getResources().getAssets();
    InputStream buffer = new BufferedInputStream((assets.open("drawable/" + filename + ".png")));
    Bitmap bitmap = BitmapFactory.decodeStream(buffer);
    return new BitmapDrawable(context.getResources(), bitmap);
}
Trotta answered 25/1, 2009 at 11:23 Comment(0)
R
83

I had this same issue and solved it by avoiding the BitmapFactory.decodeStream or decodeFile functions and instead used BitmapFactory.decodeFileDescriptor

decodeFileDescriptor looks like it calls different native methods than the decodeStream/decodeFile.

Anyways, what worked was this (note that I added some options as some had above, but that's not what made the difference. What is critical is the call to BitmapFactory.decodeFileDescriptor instead of decodeStream or decodeFile):

private void showImage(String path)   {

    Log.i("showImage","loading:"+path);
    BitmapFactory.Options bfOptions=new BitmapFactory.Options();
    bfOptions.inDither=false;                     //Disable Dithering mode
    bfOptions.inPurgeable=true;                   //Tell to gc that whether it needs free memory, the Bitmap can be cleared
    bfOptions.inInputShareable=true;              //Which kind of reference will be used to recover the Bitmap data after being clear, when it will be used in the future
    bfOptions.inTempStorage=new byte[32 * 1024]; 

    File file=new File(path);
    FileInputStream fs=null;
    try {
        fs = new FileInputStream(file);
    } catch (FileNotFoundException e) {
        //TODO do something intelligent
        e.printStackTrace();
    }

    try {
        if(fs!=null) bm=BitmapFactory.decodeFileDescriptor(fs.getFD(), null, bfOptions);
    } catch (IOException e) {
        //TODO do something intelligent
        e.printStackTrace();
    } finally{ 
        if(fs!=null) {
            try {
                fs.close();
            } catch (IOException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
    }
    //bm=BitmapFactory.decodeFile(path, bfOptions); This one causes error: java.lang.OutOfMemoryError: bitmap size exceeds VM budget

    im.setImageBitmap(bm);
    //bm.recycle();
    bm=null;                        
}

I think there is a problem with the native function used in decodeStream/decodeFile. I have confirmed that a different native method is called when using decodeFileDescriptor. Also what I've read is "that Images (Bitmaps) are not allocated in a standard Java way but via native calls; the allocations are done outside of the virtual heap, but are counted against it!"

Rimester answered 25/1, 2009 at 11:23 Comment(1)
same result out of memeory, actually it wont matter which method you are using it depend upon the number of bytes you are holding on to read the data that gives out of memory.Failure
P
75

I think best way to avoid the OutOfMemoryError is to face it and understand it.

I made an app to intentionally cause OutOfMemoryError, and monitor memory usage.

After I've done a lot of experiments with this App, I've got the following conclusions:

I'm gonna talk about SDK versions before Honey Comb first.

  1. Bitmap is stored in native heap, but it will get garbage collected automatically, calling recycle() is needless.

  2. If {VM heap size} + {allocated native heap memory} >= {VM heap size limit for the device}, and you are trying to create bitmap, OOM will be thrown.

    NOTICE: VM HEAP SIZE is counted rather than VM ALLOCATED MEMORY.

  3. VM Heap size will never shrink after grown, even if the allocated VM memory is shrinked.

  4. So you have to keep the peak VM memory as low as possible to keep VM Heap Size from growing too big to save available memory for Bitmaps.

  5. Manually call System.gc() is meaningless, the system will call it first before trying to grow the heap size.

  6. Native Heap Size will never shrink too, but it's not counted for OOM, so no need to worry about it.

Then, let's talk about SDK Starts from Honey Comb.

  1. Bitmap is stored in VM heap, Native memory is not counted for OOM.

  2. The condition for OOM is much simpler: {VM heap size} >= {VM heap size limit for the device}.

  3. So you have more available memory to create bitmap with the same heap size limit, OOM is less likely to be thrown.

Here is some of my observations about Garbage Collection and Memory Leak.

You can see it yourself in the App. If an Activity executed an AsyncTask that was still running after the Activity was destroyed, the Activity will not get garbage collected until the AsyncTask finish.

This is because AsyncTask is an instance of an anonymous inner class, it holds a reference of the Activity.

Calling AsyncTask.cancel(true) will not stop the execution if the task is blocked in an IO operation in background thread.

Callbacks are anonymous inner classes too, so if a static instance in your project holds them and do not release them, memory would be leaked.

If you scheduled a repeating or delayed task, for example a Timer, and you do not call cancel() and purge() in onPause(), memory would be leaked.

Petrosal answered 25/1, 2009 at 11:23 Comment(0)
E
68

I have seen a lot of questions about OOM exceptions and caching lately. The developer guide has a really good article on this, but some tends to fail on implementing it in a suitable way.

Because of this I wrote an example application that demonstrates caching in an Android environment. This implementation has not yet gotten an OOM.

Look at the end of this answer for a link to the source code.

Requirements:

  • Android API 2.1 or higher (I simply could not manage to get the available memory for an application in API 1.6 - that is the only piece of code that doesn't work in API 1.6)
  • Android support package

Screenshot

Features:

  • Retains the cache if there is an orientation change, using a singleton
  • Use one eighth of the assigned application memory to the cache (modify if you want)
  • Large bitmaps gets scaled (you can define the maximum pixels that you want to allow)
  • Controls that there is an internet connection available before downloading the bitmaps
  • Makes sure that you are only instantiating one task per row
  • If you are flinging the ListView away, it simply won't download the bitmaps between

This does not include:

  • Disk caching. This should be easy to implement anyway - just point to a different task that grabs the bitmaps from the disk

Sample code:

The images that are being downloaded are images (75x75) from Flickr. However, put whatever image urls you want to be processed, and the application will scale it down if it exceeds the maximum. In this application the urls are simply in a String array.

The LruCache has a good way to deal with bitmaps. However, in this application I put an instance of an LruCache inside another cache class that I created in order to get the application more feasible.

Cache.java's critical stuff (the loadBitmap() method is the most important):

public Cache(int size, int maxWidth, int maxHeight) {
    // Into the constructor you add the maximum pixels
    // that you want to allow in order to not scale images.
    mMaxWidth = maxWidth;
    mMaxHeight = maxHeight;

    mBitmapCache = new LruCache<String, Bitmap>(size) {
        protected int sizeOf(String key, Bitmap b) {
            // Assuming that one pixel contains four bytes.
            return b.getHeight() * b.getWidth() * 4;
        }
    };

    mCurrentTasks = new ArrayList<String>();    
}

/**
 * Gets a bitmap from cache. 
 * If it is not in cache, this method will:
 * 
 * 1: check if the bitmap url is currently being processed in the
 * BitmapLoaderTask and cancel if it is already in a task (a control to see
 * if it's inside the currentTasks list).
 * 
 * 2: check if an internet connection is available and continue if so.
 * 
 * 3: download the bitmap, scale the bitmap if necessary and put it into
 * the memory cache.
 * 
 * 4: Remove the bitmap url from the currentTasks list.
 * 
 * 5: Notify the ListAdapter.
 * 
 * @param mainActivity - Reference to activity object, in order to
 * call notifyDataSetChanged() on the ListAdapter.
 * @param imageKey - The bitmap url (will be the key).
 * @param imageView - The ImageView that should get an
 * available bitmap or a placeholder image.
 * @param isScrolling - If set to true, we skip executing more tasks since
 * the user probably has flinged away the view.
 */
public void loadBitmap(MainActivity mainActivity, 
        String imageKey, ImageView imageView,
        boolean isScrolling) {
    final Bitmap bitmap = getBitmapFromCache(imageKey); 

    if (bitmap != null) {
        imageView.setImageBitmap(bitmap);
    } else {
        imageView.setImageResource(R.drawable.ic_launcher);
        if (!isScrolling && !mCurrentTasks.contains(imageKey) && 
                mainActivity.internetIsAvailable()) {
            BitmapLoaderTask task = new BitmapLoaderTask(imageKey,
                    mainActivity.getAdapter());
            task.execute();
        }
    } 
}

You shouldn't need to edit anything in the Cache.java file unless you want to implement disk caching.

MainActivity.java's critical stuff:

public void onScrollStateChanged(AbsListView view, int scrollState) {
    if (view.getId() == android.R.id.list) {
        // Set scrolling to true only if the user has flinged the       
        // ListView away, hence we skip downloading a series
        // of unnecessary bitmaps that the user probably
        // just want to skip anyways. If we scroll slowly it
        // will still download bitmaps - that means
        // that the application won't wait for the user
        // to lift its finger off the screen in order to
        // download.
        if (scrollState == SCROLL_STATE_FLING) {
            mIsScrolling = true;
        } else {
            mIsScrolling = false;
            mListAdapter.notifyDataSetChanged();
        }
    } 
}

// Inside ListAdapter...
@Override
public View getView(final int position, View convertView, ViewGroup parent) {           
    View row = convertView;
    final ViewHolder holder;

    if (row == null) {
        LayoutInflater inflater = getLayoutInflater();
        row = inflater.inflate(R.layout.main_listview_row, parent, false);  
        holder = new ViewHolder(row);
        row.setTag(holder);
    } else {
        holder = (ViewHolder) row.getTag();
    }   

    final Row rowObject = getItem(position);

    // Look at the loadBitmap() method description...
    holder.mTextView.setText(rowObject.mText);      
    mCache.loadBitmap(MainActivity.this,
            rowObject.mBitmapUrl, holder.mImageView,
            mIsScrolling);  

    return row;
}

getView() gets called very often. It's normally not a good idea to download images there if we haven't implemented a check that ensure us that we won't start an infinite amount of threads per row. Cache.java checks whether the rowObject.mBitmapUrl already is in a task and if it is, it won't start another. Therefore, we are most likely not exceeding the work queue restriction from the AsyncTask pool.

Download:

You can download the source code from https://www.dropbox.com/s/pvr9zyl811tfeem/ListViewImageCache.zip.


Last words:

I have tested this for a few weeks now, I haven't gotten a single OOM exception yet. I have tested this on the emulator, on my Nexus One and on my Nexus S. I have tested image urls that contain images that were in HD quality. The only bottleneck is that it takes more time to download.

There is only one possible scenario where I can imagine that the OOM will appear, and that is if we download many, really big images, and before they get scaled and put into cache, will simultaneously take up more memory and cause an OOM. But that isn't even an ideal situation anyway and it most likely won't be possible to solve in a more feasible way.

Report errors in the comments! :-)

Exclusion answered 25/1, 2009 at 11:23 Comment(0)
H
46

I did the following to take the image and resize it on the fly. Hope this helps

Bitmap bm;
bm = Bitmap.createScaledBitmap(BitmapFactory.decodeFile(filepath), 100, 100, true);
mPicture = new ImageView(context);
mPicture.setImageBitmap(bm);    
Heartburning answered 25/1, 2009 at 11:23 Comment(3)
This approach scales the bitmap. But it doesn't solve the OutOfMemory issue because the full bitmap is being decoded anyway.Independence
I will see if I can look at my old code, but I think it did solve my out of memory issues. Will double check my old code.Heartburning
In this example at least, it looks like you aren't keeping the reference to the full bitmap, thus the memory savings.Barnacle
C
39

unfortunately if None of the Above works, then Add this to your Manifest file. Inside application tag

 <application
         android:largeHeap="true"
Corazoncorban answered 25/1, 2009 at 11:23 Comment(4)
Can you explain what this actually does? Simply telling people to add this doesn't help.Jacobite
This is a very bad solution. Basically you are not trying to fix the problem. Instead asking android system to allocate more heap space for your application. This will have very bad implications on your app like your app consuming lot of battery power as GC has to run through large heap space to clean up memory and also your app performance will be slower.Modest
then why android is allowing us add this android:largeHeap="true" in our manifest? Now you are challenging Android.Corazoncorban
@HimanshuMori You may want to reconsider your decision about using android:largeHeap="true". See this answer https://mcmap.net/q/27095/-what-are-advantages-of-setting-largeheap-to-true or any other answer in that thread. It might help you understand what you're doing wrong.Skipp
C
37

It seems that this is a very long running problem, with a lot of differing explanations. I took the advice of the two most common presented answers here, but neither one of these solved my problems of the VM claiming it couldn't afford the bytes to perform the decoding part of the process. After some digging I learned that the real problem here is the decoding process taking away from the NATIVE heap.

See here: BitmapFactory OOM driving me nuts

That lead me to another discussion thread where I found a couple more solutions to this problem. One is to callSystem.gc(); manually after your image is displayed. But that actually makes your app use MORE memory, in an effort to reduce the native heap. The better solution as of the release of 2.0 (Donut) is to use the BitmapFactory option "inPurgeable". So I simply added o2.inPurgeable=true; just after o2.inSampleSize=scale;.

More on that topic here: Is the limit of memory heap only 6M?

Now, having said all of this, I am a complete dunce with Java and Android too. So if you think this is a terrible way to solve this problem, you are probably right. ;-) But this has worked wonders for me, and I have found it impossible to run the VM out of heap cache now. The only drawback I can find is that you are trashing your cached drawn image. Which means if you go RIGHT back to that image, you are redrawing it each and every time. In the case of how my application works, that is not really a problem. Your mileage may vary.

Cocoon answered 25/1, 2009 at 11:23 Comment(1)
inPurgeable fixed OOM for me.Marella
B
35

Use this bitmap.recycle(); This helps without any image quality issue.

Baucom answered 25/1, 2009 at 11:23 Comment(1)
According to the API, calling recycle() is not needed.Marella
Y
32

I have resolved the same issue in the following manner.

Bitmap b = null;
Drawable d;
ImageView i = new ImageView(mContext);
try {
    b = Bitmap.createBitmap(320,424,Bitmap.Config.RGB_565);
    b.eraseColor(0xFFFFFFFF);
    Rect r = new Rect(0, 0,320 , 424);
    Canvas c = new Canvas(b);
    Paint p = new Paint();
    p.setColor(0xFFC0C0C0);
    c.drawRect(r, p);
    d = mContext.getResources().getDrawable(mImageIds[position]);
    d.setBounds(r);
    d.draw(c);

    /*   
        BitmapFactory.Options o2 = new BitmapFactory.Options();
        o2.inTempStorage = new byte[128*1024];
        b = BitmapFactory.decodeStream(mContext.getResources().openRawResource(mImageIds[position]), null, o2);
        o2.inSampleSize=16;
        o2.inPurgeable = true;
    */
} catch (Exception e) {

}
i.setImageBitmap(b);
Yen answered 25/1, 2009 at 11:23 Comment(0)
F
31

I have a much more effective solution which does not need scaling of any sort. Simply decode your bitmap only once and then cache it in a map against its name. Then simply retrieve the bitmap against the name and set it in the ImageView. There is nothing more that needs to be done.

This will work because the actual binary data of the decoded bitmap is not stored within the dalvik VM heap. It is stored externally. So every time you decode a bitmap, it allocates memory outside of VM heap which is never reclaimed by GC

To help you better appreciate this, imagine you have kept ur image in the drawable folder. You just get the image by doing a getResources().getDrwable(R.drawable.). This will NOT decode your image everytime but re-use an already decoded instance everytime you call it. So in essence it is cached.

Now since your image is in a file somewhere (or may even be coming from an external server), it is YOUR responsibility to cache the decoded bitmap instance to be reused any where it is needed.

Hope this helps.

Forum answered 25/1, 2009 at 11:23 Comment(4)
"and then cache it in a map against its name." How exactly do you cache your images?Julietajulietta
Have you actually tried this? Even though the pixel data is not actually stored within the Dalvik heap, its size in native memory is reported to the VM and counted against its available memory.Ruvalcaba
@Julietajulietta I think its not hard to store them in a Map. I would suggest something like HashMap<KEY, Bitmap> map, where the Key can be a String of the source or anything that makes sense for you. Lets assume you take a path as KEY, you store it as map.put(Path, Bitmap) and recieve it through map.get(Path)Hieratic
you prob would want to use HashMap<String, SoftReference<Bitmap>> if you are implementing an image Cache otherwise you may run out of memory anyway - also i dont think that "it allocates memory outside of VM heap which is never reclaimed by GC" is true, the memory is reclaimed as i understand just may be a delay, which is what bitmap.recycle() is for, as a hint to reclaim the mem early...Butterworth
F
30

This worked for me!

public Bitmap readAssetsBitmap(String filename) throws IOException {
    try {
        BitmapFactory.Options options = new BitmapFactory.Options(); 
        options.inPurgeable = true;
        Bitmap bitmap = BitmapFactory.decodeStream(assets.open(filename), null, options);
        if(bitmap == null) {
            throw new IOException("File cannot be opened: It's value is null");
        } else {
            return bitmap;
        }
    } catch (IOException e) {
        throw new IOException("File cannot be opened: " + e.getMessage());
    }
}
Femur answered 25/1, 2009 at 11:23 Comment(0)
B
30

There are two issues here....

  • Bitmap memory isn't in the VM heap but rather in the native heap - see BitmapFactory OOM driving me nuts
  • Garbage collection for the native heap is lazier than the VM heap - so you need to be quite aggressive about doing bitmap.recycle and bitmap =null every time you go through an Activity's onPause or onDestroy
Blague answered 25/1, 2009 at 11:23 Comment(0)
F
23

Great answers here, but I wanted a fully usable class to address this problem.. so I did one.

Here is my BitmapHelper class that is OutOfMemoryError proof :-)

import java.io.File;
import java.io.FileInputStream;

import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Matrix;
import android.graphics.drawable.BitmapDrawable;
import android.graphics.drawable.Drawable;

public class BitmapHelper
{

    //decodes image and scales it to reduce memory consumption
    public static Bitmap decodeFile(File bitmapFile, int requiredWidth, int requiredHeight, boolean quickAndDirty)
    {
        try
        {
            //Decode image size
            BitmapFactory.Options bitmapSizeOptions = new BitmapFactory.Options();
            bitmapSizeOptions.inJustDecodeBounds = true;
            BitmapFactory.decodeStream(new FileInputStream(bitmapFile), null, bitmapSizeOptions);

            // load image using inSampleSize adapted to required image size
            BitmapFactory.Options bitmapDecodeOptions = new BitmapFactory.Options();
            bitmapDecodeOptions.inTempStorage = new byte[16 * 1024];
            bitmapDecodeOptions.inSampleSize = computeInSampleSize(bitmapSizeOptions, requiredWidth, requiredHeight, false);
            bitmapDecodeOptions.inPurgeable = true;
            bitmapDecodeOptions.inDither = !quickAndDirty;
            bitmapDecodeOptions.inPreferredConfig = quickAndDirty ? Bitmap.Config.RGB_565 : Bitmap.Config.ARGB_8888;

            Bitmap decodedBitmap = BitmapFactory.decodeStream(new FileInputStream(bitmapFile), null, bitmapDecodeOptions);

            // scale bitmap to mathc required size (and keep aspect ratio)

            float srcWidth = (float) bitmapDecodeOptions.outWidth;
            float srcHeight = (float) bitmapDecodeOptions.outHeight;

            float dstWidth = (float) requiredWidth;
            float dstHeight = (float) requiredHeight;

            float srcAspectRatio = srcWidth / srcHeight;
            float dstAspectRatio = dstWidth / dstHeight;

            // recycleDecodedBitmap is used to know if we must recycle intermediary 'decodedBitmap'
            // (DO NOT recycle it right away: wait for end of bitmap manipulation process to avoid
            // java.lang.RuntimeException: Canvas: trying to use a recycled bitmap android.graphics.Bitmap@416ee7d8
            // I do not excatly understand why, but this way it's OK

            boolean recycleDecodedBitmap = false;

            Bitmap scaledBitmap = decodedBitmap;
            if (srcAspectRatio < dstAspectRatio)
            {
                scaledBitmap = getScaledBitmap(decodedBitmap, (int) dstWidth, (int) (srcHeight * (dstWidth / srcWidth)));
                // will recycle recycleDecodedBitmap
                recycleDecodedBitmap = true;
            }
            else if (srcAspectRatio > dstAspectRatio)
            {
                scaledBitmap = getScaledBitmap(decodedBitmap, (int) (srcWidth * (dstHeight / srcHeight)), (int) dstHeight);
                recycleDecodedBitmap = true;
            }

            // crop image to match required image size

            int scaledBitmapWidth = scaledBitmap.getWidth();
            int scaledBitmapHeight = scaledBitmap.getHeight();

            Bitmap croppedBitmap = scaledBitmap;

            if (scaledBitmapWidth > requiredWidth)
            {
                int xOffset = (scaledBitmapWidth - requiredWidth) / 2;
                croppedBitmap = Bitmap.createBitmap(scaledBitmap, xOffset, 0, requiredWidth, requiredHeight);
                scaledBitmap.recycle();
            }
            else if (scaledBitmapHeight > requiredHeight)
            {
                int yOffset = (scaledBitmapHeight - requiredHeight) / 2;
                croppedBitmap = Bitmap.createBitmap(scaledBitmap, 0, yOffset, requiredWidth, requiredHeight);
                scaledBitmap.recycle();
            }

            if (recycleDecodedBitmap)
            {
                decodedBitmap.recycle();
            }
            decodedBitmap = null;

            scaledBitmap = null;
            return croppedBitmap;
        }
        catch (Exception ex)
        {
            ex.printStackTrace();
        }
        return null;
    }

    /**
     * compute powerOf2 or exact scale to be used as {@link BitmapFactory.Options#inSampleSize} value (for subSampling)
     * 
     * @param requiredWidth
     * @param requiredHeight
     * @param powerOf2
     *            weither we want a power of 2 sclae or not
     * @return
     */
    public static int computeInSampleSize(BitmapFactory.Options options, int dstWidth, int dstHeight, boolean powerOf2)
    {
        int inSampleSize = 1;

        // Raw height and width of image
        final int srcHeight = options.outHeight;
        final int srcWidth = options.outWidth;

        if (powerOf2)
        {
            //Find the correct scale value. It should be the power of 2.

            int tmpWidth = srcWidth, tmpHeight = srcHeight;
            while (true)
            {
                if (tmpWidth / 2 < dstWidth || tmpHeight / 2 < dstHeight)
                    break;
                tmpWidth /= 2;
                tmpHeight /= 2;
                inSampleSize *= 2;
            }
        }
        else
        {
            // Calculate ratios of height and width to requested height and width
            final int heightRatio = Math.round((float) srcHeight / (float) dstHeight);
            final int widthRatio = Math.round((float) srcWidth / (float) dstWidth);

            // Choose the smallest ratio as inSampleSize value, this will guarantee
            // a final image with both dimensions larger than or equal to the
            // requested height and width.
            inSampleSize = heightRatio < widthRatio ? heightRatio : widthRatio;
        }

        return inSampleSize;
    }

    public static Bitmap drawableToBitmap(Drawable drawable)
    {
        if (drawable instanceof BitmapDrawable)
        {
            return ((BitmapDrawable) drawable).getBitmap();
        }

        Bitmap bitmap = Bitmap.createBitmap(drawable.getIntrinsicWidth(), drawable.getIntrinsicHeight(), Config.ARGB_8888);
        Canvas canvas = new Canvas(bitmap);
        drawable.setBounds(0, 0, canvas.getWidth(), canvas.getHeight());
        drawable.draw(canvas);

        return bitmap;
    }

    public static Bitmap getScaledBitmap(Bitmap bitmap, int newWidth, int newHeight)
    {
        int width = bitmap.getWidth();
        int height = bitmap.getHeight();
        float scaleWidth = ((float) newWidth) / width;
        float scaleHeight = ((float) newHeight) / height;

        // CREATE A MATRIX FOR THE MANIPULATION
        Matrix matrix = new Matrix();
        // RESIZE THE BIT MAP
        matrix.postScale(scaleWidth, scaleHeight);

        // RECREATE THE NEW BITMAP
        Bitmap resizedBitmap = Bitmap.createBitmap(bitmap, 0, 0, width, height, matrix, false);
        return resizedBitmap;
    }

}
Ferrate answered 25/1, 2009 at 11:23 Comment(0)
S
22

None of the answers above worked for me, but I did come up with a horribly ugly workaround that solved the problem. I added a very small, 1x1 pixel image to my project as a resource, and loaded it into my ImageView before calling into garbage collection. I think it might be that the ImageView was not releasing the Bitmap, so GC never picked it up. It's ugly, but it seems to be working for now.

if (bitmap != null)
{
  bitmap.recycle();
  bitmap = null;
}
if (imageView != null)
{
  imageView.setImageResource(R.drawable.tiny); // This is my 1x1 png.
}
System.gc();

imageView.setImageBitmap(...); // Do whatever you need to do to load the image you want.
Serles answered 25/1, 2009 at 11:23 Comment(0)
F
21

This works for me.

Bitmap myBitmap;

BitmapFactory.Options options = new BitmapFactory.Options(); 
options.InPurgeable = true;
options.OutHeight = 50;
options.OutWidth = 50;
options.InSampleSize = 4;

File imgFile = new File(filepath);
myBitmap = BitmapFactory.DecodeFile(imgFile.AbsolutePath, options);

and this is on C# monodroid. you can easily change the path of the image. what important here is the options to be set.

Fishplate answered 25/1, 2009 at 11:23 Comment(0)
G
18

In one of my application i need to take picture either from Camera/Gallery. If user click image from Camera(may be 2MP, 5MP or 8MP), image size varies from kBs to MBs. If image size is less(or up to 1-2MB) above code working fine but if i have image of size above 4MB or 5MB then OOM comes in frame :(

then i have worked to solve this issue & finally i've made the below improvement to Fedor's(All Credit to Fedor for making such a nice solution) code :)

private Bitmap decodeFile(String fPath) {
    // Decode image size
    BitmapFactory.Options opts = new BitmapFactory.Options();
    /*
     * If set to true, the decoder will return null (no bitmap), but the
     * out... fields will still be set, allowing the caller to query the
     * bitmap without having to allocate the memory for its pixels.
     */
    opts.inJustDecodeBounds = true;
    opts.inDither = false; // Disable Dithering mode
    opts.inPurgeable = true; // Tell to gc that whether it needs free
                                // memory, the Bitmap can be cleared
    opts.inInputShareable = true; // Which kind of reference will be used to
                                    // recover the Bitmap data after being
                                    // clear, when it will be used in the
                                    // future

    BitmapFactory.decodeFile(fPath, opts);

    // The new size we want to scale to
    final int REQUIRED_SIZE = 70;

    // Find the correct scale value. 
    int scale = 1;

    if (opts.outHeight > REQUIRED_SIZE || opts.outWidth > REQUIRED_SIZE) {

        // Calculate ratios of height and width to requested height and width
        final int heightRatio = Math.round((float) opts.outHeight
                / (float) REQUIRED_SIZE);
        final int widthRatio = Math.round((float) opts.outWidth
                / (float) REQUIRED_SIZE);

        // Choose the smallest ratio as inSampleSize value, this will guarantee
        // a final image with both dimensions larger than or equal to the
        // requested height and width.
        scale = heightRatio < widthRatio ? heightRatio : widthRatio;//
    }

    // Decode bitmap with inSampleSize set
    opts.inJustDecodeBounds = false;

    opts.inSampleSize = scale;

    Bitmap bm = BitmapFactory.decodeFile(fPath, opts).copy(
            Bitmap.Config.RGB_565, false);

    return bm;

}

I hope this will help the buddies facing the same problem!

for more please refer this

Guillermoguilloche answered 25/1, 2009 at 11:23 Comment(0)
U
18

This seems like the appropriate place to share my utility class for loading and processing images with the community, you are welcome to use it and modify it freely.

package com.emil;

import java.io.IOException;
import java.io.InputStream;

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;

/**
 * A class to load and process images of various sizes from input streams and file paths.
 * 
 * @author Emil http://stackoverflow.com/users/220710/emil
 *
 */
public class ImageProcessing {

    public static Bitmap getBitmap(InputStream stream, int sampleSize, Bitmap.Config bitmapConfig) throws IOException{
        BitmapFactory.Options options=ImageProcessing.getOptionsForSampling(sampleSize, bitmapConfig);
        Bitmap bm = BitmapFactory.decodeStream(stream,null,options);
        if(ImageProcessing.checkDecode(options)){
            return bm;
        }else{
            throw new IOException("Image decoding failed, using stream.");
        }
    }

    public static Bitmap getBitmap(String imgPath, int sampleSize, Bitmap.Config bitmapConfig) throws IOException{
        BitmapFactory.Options options=ImageProcessing.getOptionsForSampling(sampleSize, bitmapConfig);
        Bitmap bm = BitmapFactory.decodeFile(imgPath,options);
        if(ImageProcessing.checkDecode(options)){
            return bm;
        }else{
            throw new IOException("Image decoding failed, using file path.");
        }
    }

    public static Dimensions getDimensions(InputStream stream) throws IOException{
        BitmapFactory.Options options=ImageProcessing.getOptionsForDimensions();
        BitmapFactory.decodeStream(stream,null,options);
        if(ImageProcessing.checkDecode(options)){
            return new ImageProcessing.Dimensions(options.outWidth,options.outHeight);
        }else{
            throw new IOException("Image decoding failed, using stream.");
        }
    }

    public static Dimensions getDimensions(String imgPath) throws IOException{
        BitmapFactory.Options options=ImageProcessing.getOptionsForDimensions();
        BitmapFactory.decodeFile(imgPath,options);
        if(ImageProcessing.checkDecode(options)){
            return new ImageProcessing.Dimensions(options.outWidth,options.outHeight);
        }else{
            throw new IOException("Image decoding failed, using file path.");
        }
    }

    private static boolean checkDecode(BitmapFactory.Options options){
        // Did decode work?
        if( options.outWidth<0 || options.outHeight<0 ){
            return false;
        }else{
            return true;
        }
    }

    /**
     * Creates a Bitmap that is of the minimum dimensions necessary
     * @param bm
     * @param min
     * @return
     */
    public static Bitmap createMinimalBitmap(Bitmap bm, ImageProcessing.Minimize min){
        int newWidth, newHeight;
        switch(min.type){
        case WIDTH:
            if(bm.getWidth()>min.minWidth){
                newWidth=min.minWidth;
                newHeight=ImageProcessing.getScaledHeight(newWidth, bm);
            }else{
                // No resize
                newWidth=bm.getWidth();
                newHeight=bm.getHeight();
            }
            break;
        case HEIGHT:
            if(bm.getHeight()>min.minHeight){
                newHeight=min.minHeight;
                newWidth=ImageProcessing.getScaledWidth(newHeight, bm);
            }else{
                // No resize
                newWidth=bm.getWidth();
                newHeight=bm.getHeight();
            }
            break;
        case BOTH: // minimize to the maximum dimension
        case MAX:
            if(bm.getHeight()>bm.getWidth()){
                // Height needs to minimized
                min.minDim=min.minDim!=null ? min.minDim : min.minHeight;
                if(bm.getHeight()>min.minDim){
                    newHeight=min.minDim;
                    newWidth=ImageProcessing.getScaledWidth(newHeight, bm);
                }else{
                    // No resize
                    newWidth=bm.getWidth();
                    newHeight=bm.getHeight();
                }
            }else{
                // Width needs to be minimized
                min.minDim=min.minDim!=null ? min.minDim : min.minWidth;
                if(bm.getWidth()>min.minDim){
                    newWidth=min.minDim;
                    newHeight=ImageProcessing.getScaledHeight(newWidth, bm);
                }else{
                    // No resize
                    newWidth=bm.getWidth();
                    newHeight=bm.getHeight();
                }
            }
            break;
        default:
            // No resize
            newWidth=bm.getWidth();
            newHeight=bm.getHeight();
        }
        return Bitmap.createScaledBitmap(bm, newWidth, newHeight, true);
    }

    public static int getScaledWidth(int height, Bitmap bm){
        return (int)(((double)bm.getWidth()/bm.getHeight())*height);
    }

    public static int getScaledHeight(int width, Bitmap bm){
        return (int)(((double)bm.getHeight()/bm.getWidth())*width);
    }

    /**
     * Get the proper sample size to meet minimization restraints
     * @param dim
     * @param min
     * @param multipleOf2 for fastest processing it is recommended that the sample size be a multiple of 2
     * @return
     */
    public static int getSampleSize(ImageProcessing.Dimensions dim, ImageProcessing.Minimize min, boolean multipleOf2){
        switch(min.type){
        case WIDTH:
            return ImageProcessing.getMaxSampleSize(dim.width, min.minWidth, multipleOf2);
        case HEIGHT:
            return ImageProcessing.getMaxSampleSize(dim.height, min.minHeight, multipleOf2);
        case BOTH:
            int widthMaxSampleSize=ImageProcessing.getMaxSampleSize(dim.width, min.minWidth, multipleOf2);
            int heightMaxSampleSize=ImageProcessing.getMaxSampleSize(dim.height, min.minHeight, multipleOf2);
            // Return the smaller of the two
            if(widthMaxSampleSize<heightMaxSampleSize){
                return widthMaxSampleSize;
            }else{
                return heightMaxSampleSize;
            }
        case MAX:
            // Find the larger dimension and go bases on that
            if(dim.width>dim.height){
                return ImageProcessing.getMaxSampleSize(dim.width, min.minDim, multipleOf2);
            }else{
                return ImageProcessing.getMaxSampleSize(dim.height, min.minDim, multipleOf2);
            }
        }
        return 1;
    }

    public static int getMaxSampleSize(int dim, int min, boolean multipleOf2){
        int add=multipleOf2 ? 2 : 1;
        int size=0;
        while(min<(dim/(size+add))){
            size+=add;
        }
        size = size==0 ? 1 : size;
        return size;        
    }

    public static class Dimensions {
        int width;
        int height;

        public Dimensions(int width, int height) {
            super();
            this.width = width;
            this.height = height;
        }

        @Override
        public String toString() {
            return width+" x "+height;
        }
    }

    public static class Minimize {
        public enum Type {
            WIDTH,HEIGHT,BOTH,MAX
        }
        Integer minWidth;
        Integer minHeight;
        Integer minDim;
        Type type;

        public Minimize(int min, Type type) {
            super();
            this.type = type;
            switch(type){
            case WIDTH:
                this.minWidth=min;
                break;
            case HEIGHT:
                this.minHeight=min;
                break;
            case BOTH:
                this.minWidth=min;
                this.minHeight=min;
                break;
            case MAX:
                this.minDim=min;
                break;
            }
        }

        public Minimize(int minWidth, int minHeight) {
            super();
            this.type=Type.BOTH;
            this.minWidth = minWidth;
            this.minHeight = minHeight;
        }

    }

    /**
     * Estimates size of Bitmap in bytes depending on dimensions and Bitmap.Config
     * @param width
     * @param height
     * @param config
     * @return
     */
    public static long estimateBitmapBytes(int width, int height, Bitmap.Config config){
        long pixels=width*height;
        switch(config){
        case ALPHA_8: // 1 byte per pixel
            return pixels;
        case ARGB_4444: // 2 bytes per pixel, but depreciated
            return pixels*2;
        case ARGB_8888: // 4 bytes per pixel
            return pixels*4;
        case RGB_565: // 2 bytes per pixel
            return pixels*2;
        default:
            return pixels;
        }
    }

    private static BitmapFactory.Options getOptionsForDimensions(){
        BitmapFactory.Options options = new BitmapFactory.Options();
        options.inJustDecodeBounds=true;
        return options;
    }

    private static BitmapFactory.Options getOptionsForSampling(int sampleSize, Bitmap.Config bitmapConfig){
        BitmapFactory.Options options = new BitmapFactory.Options();
        options.inJustDecodeBounds = false;
        options.inDither = false;
        options.inSampleSize = sampleSize;
        options.inScaled = false;
        options.inPreferredConfig = bitmapConfig;
        return options;
    }
}
Ulani answered 25/1, 2009 at 11:23 Comment(0)
R
16

This issue only happens in Android emulators. I also faced this issue in an emulator but when I checked in a device then it worked fine.

So please check in a device. It may be run in device.

Roane answered 25/1, 2009 at 11:23 Comment(0)
B
16

I just ran into this issue a couple minutes ago. I solved it by doing a better job at managing my listview adapter. I thought it was an issue with the hundreds of 50x50px images I was using, turns out I was trying to inflate my custom view each time the row was being shown. Simply by testing to see if the row had been inflated I eliminated this error, and I am using hundreds of bitmaps. This is actually for a Spinner, but the base adapter works all the same for a ListView. This simple fix also greatly improved the performance of the adapter.

@Override
public View getView(final int position, View convertView, final ViewGroup parent) {

    if(convertView == null){
        LayoutInflater inflater = (LayoutInflater) mContext.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
        convertView = inflater.inflate(R.layout.spinner_row, null);
    }
...
Baresark answered 25/1, 2009 at 11:23 Comment(1)
I can't thank you enough for this! I was chasing the wrong problem before seeing this. Question for you though: Since each or my list rows has a unique name and photo I had to use a convertView array to retain each of the rows' values. I couldn't see how using a single variable would allow you to do so. Am I missing something?Propitious
H
15

use these code for every image in select from SdCard or drewable to convert bitmap object.

Resources res = getResources();
WindowManager window = (WindowManager) getSystemService(Context.WINDOW_SERVICE);
Display display = window.getDefaultDisplay();
@SuppressWarnings("deprecation")
int width = display.getWidth();
@SuppressWarnings("deprecation")
int height = display.getHeight();
try {
    if (bitmap != null) {
        bitmap.recycle();
        bitmap = null;
        System.gc();
    }
    bitmap = Bitmap.createScaledBitmap(BitmapFactory
        .decodeFile(ImageData_Path.get(img_pos).getPath()),
        width, height, true);
} catch (OutOfMemoryError e) {
    if (bitmap != null) {
        bitmap.recycle();
        bitmap = null;
        System.gc();
    }
    BitmapFactory.Options options = new BitmapFactory.Options();
    options.inPreferredConfig = Config.RGB_565;
    options.inSampleSize = 1;
    options.inPurgeable = true;
    bitmapBitmap.createScaledBitmap(BitmapFactory.decodeFile(ImageData_Path.get(img_pos)
        .getPath().toString(), options), width, height,true);
}
return bitmap;

use your image path instend of ImageData_Path.get(img_pos).getPath() .

Hayton answered 25/1, 2009 at 11:23 Comment(0)
M
15

All the solutions here require setting a IMAGE_MAX_SIZE. This limits devices with more powerful hardware and if the image size is too low it looks ugly on the HD screen.

I came out with a solution that works with my Samsung Galaxy S3 and several other devices including less powerful ones, with better image quality when a more powerful device is used.

The gist of it is to calculate the maximum memory allocated for the app on a particular device, then set the scale to be lowest possible without exceeding this memory. Here's the code:

public static Bitmap decodeFile(File f)
{
    Bitmap b = null;
    try
    {
        // Decode image size
        BitmapFactory.Options o = new BitmapFactory.Options();
        o.inJustDecodeBounds = true;

        FileInputStream fis = new FileInputStream(f);
        try
        {
            BitmapFactory.decodeStream(fis, null, o);
        }
        finally
        {
            fis.close();
        }

        // In Samsung Galaxy S3, typically max memory is 64mb
        // Camera max resolution is 3264 x 2448, times 4 to get Bitmap memory of 30.5mb for one bitmap
        // If we use scale of 2, resolution will be halved, 1632 x 1224 and x 4 to get Bitmap memory of 7.62mb
        // We try use 25% memory which equals to 16mb maximum for one bitmap
        long maxMemory = Runtime.getRuntime().maxMemory();
        int maxMemoryForImage = (int) (maxMemory / 100 * 25);

        // Refer to
        // http://developer.android.com/training/displaying-bitmaps/cache-bitmap.html
        // A full screen GridView filled with images on a device with
        // 800x480 resolution would use around 1.5MB (800*480*4 bytes)
        // When bitmap option's inSampleSize doubled, pixel height and
        // weight both reduce in half
        int scale = 1;
        while ((o.outWidth / scale) * (o.outHeight / scale) * 4 > maxMemoryForImage)
        scale *= 2;

        // Decode with inSampleSize
        BitmapFactory.Options o2 = new BitmapFactory.Options();
        o2.inSampleSize = scale;
        fis = new FileInputStream(f);
        try
        {
            b = BitmapFactory.decodeStream(fis, null, o2);
        }
        finally
        {
            fis.close();
        }
    }
    catch (IOException e)
    {
    }
    return b;
}

I set the maximum memory used by this bitmap to be 25% of maximum allocated memory, you may need to adjust this to your needs and make sure this bitmap is cleaned up and don't stay in memory when you've finished using it. Typically I use this code to perform image rotation (source and destination bitmap) so my app needs to load 2 bitmaps in memory at the same time, and 25% gives me a good buffer without running out of memory when performing image rotation.

Hope this helps someone out there..

Matterhorn answered 25/1, 2009 at 11:23 Comment(0)
R
15

Generally android device heap size is only 16MB (varies from device/OS see post Heap Sizes), if you are loading the images and it crosses the size of 16MB , it will throw out of memory exception, instead of using the Bitmap for , loading images from SD card or from resources or even from network try to using getImageUri , loading bitmap require more memory , or you can set bitmap to null if your work done with that bitmap.

Rah answered 25/1, 2009 at 11:23 Comment(1)
And if setImageURI still getting exception then refer this #15377686Comp
E
15

I've spent the entire day testing these solutions and the only thing that worked for me is the above approaches for getting the image and manually calling the GC, which I know is not supposed to be necessary, but it is the only thing that worked when I put my app under heavy load testing switching between activities. My app has a list of thumbnail images in a listview in (lets say activity A) and when you click on one of those images it takes you to another activity (lets say activity B) that shows a main image for that item. When I would switch back and forth between the two activities, I would eventually get the OOM error and the app would force close.

When I would get half way down the listview it would crash.

Now when I implement the following in activity B, I can go through the entire listview with no issue and keep going and going and going...and its plenty fast.

@Override
public void onDestroy()
{   
    Cleanup();
    super.onDestroy();
}

private void Cleanup()
{    
    bitmap.recycle();
    System.gc();
    Runtime.getRuntime().gc();  
}
Emu answered 25/1, 2009 at 11:23 Comment(0)
M
14

My 2 cents: i solved my OOM errors with bitmaps by:

a) scaling my images by a factor of 2

b) using Picasso library in my custom Adapter for a ListView, with a one-call in getView like this: Picasso.with(context).load(R.id.myImage).into(R.id.myImageView);

Marchese answered 25/1, 2009 at 11:23 Comment(0)
G
14

This code will help to load large bitmap from drawable

public class BitmapUtilsTask extends AsyncTask<Object, Void, Bitmap> {

    Context context;

    public BitmapUtilsTask(Context context) {
        this.context = context;
    }

    /**
     * Loads a bitmap from the specified url.
     * 
     * @param url The location of the bitmap asset
     * @return The bitmap, or null if it could not be loaded
     * @throws IOException
     * @throws MalformedURLException
     */
    public Bitmap getBitmap() throws MalformedURLException, IOException {       

        // Get the source image's dimensions
        int desiredWidth = 1000;
        BitmapFactory.Options options = new BitmapFactory.Options();
        options.inJustDecodeBounds = true;

        BitmapFactory.decodeResource(context.getResources(), R.drawable.green_background , options);

        int srcWidth = options.outWidth;
        int srcHeight = options.outHeight;

        // Only scale if the source is big enough. This code is just trying
        // to fit a image into a certain width.
        if (desiredWidth > srcWidth)
            desiredWidth = srcWidth;

        // Calculate the correct inSampleSize/scale value. This helps reduce
        // memory use. It should be a power of 2
        int inSampleSize = 1;
        while (srcWidth / 2 > desiredWidth) {
            srcWidth /= 2;
            srcHeight /= 2;
            inSampleSize *= 2;
        }
        // Decode with inSampleSize
        options.inJustDecodeBounds = false;
        options.inDither = false;
        options.inSampleSize = inSampleSize;
        options.inScaled = false;
        options.inPreferredConfig = Bitmap.Config.ARGB_8888;
        options.inPurgeable = true;
        Bitmap sampledSrcBitmap;

        sampledSrcBitmap =  BitmapFactory.decodeResource(context.getResources(), R.drawable.green_background , options);

        return sampledSrcBitmap;
    }

    /**
     * The system calls this to perform work in a worker thread and delivers
     * it the parameters given to AsyncTask.execute()
     */
    @Override
    protected Bitmap doInBackground(Object... item) {
        try { 
          return getBitmap();
        } catch (MalformedURLException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        }
        return null;
    }
}
Glassman answered 25/1, 2009 at 11:23 Comment(0)
U
14

Such OutofMemoryException cannot be totally resolved by calling the System.gc() and so on .

By referring to the Activity Life Cycle

The Activity States are determined by the OS itself subject to the memory usage for each process and the priority of each process.

You may consider the size and the resolution for each of the bitmap pictures used. I recommend to reduce the size ,resample to lower resolution , refer to the design of galleries (one small picture PNG , and one original picture.)

Ulotrichous answered 25/1, 2009 at 11:23 Comment(0)
I
7

It seems the images you have used is very large in size.so some older devices crashes occurs due to heap memory full.In older devices(honey comb or ICS or any low end model devices) try to use android:largeHeap="true" in the manifest file under application tag or reduce the size of the bitmap by using below code.

Bitmap bMap;
BitmapFactory.Options options = new BitmapFactory.Options(); 
options.InSampleSize = 8;
bMap= BitmapFactory.DecodeFile(imgFile.AbsolutePath, options);

you can also give 4 or 12 or 16 to reduce the bitmap size

Infrangible answered 25/1, 2009 at 11:23 Comment(0)
F
7
BitmapFactory.Options options = new Options();
options.inSampleSize = 32;
//img = BitmapFactory.decodeFile(imageids[position], options);

Bitmap theImage = BitmapFactory.decodeStream(imageStream,null, options);
Bitmap img=theImage.copy(Bitmap.Config.RGB_565,true);
theImage.recycle();
theImage = null;
System.gc();
//ivlogdp.setImageBitmap(img);
Runtime.getRuntime().gc();
Forehanded answered 25/1, 2009 at 11:23 Comment(0)
G
5

I tried Thomas Vervest's approach, but it returns a scale of 1 for image size 2592x1944 when IMAGE_MAX_SIZE is 2048.

This version worked for me based on all the other comments provided by others:

private Bitmap decodeFile (File f) {
    Bitmap b = null;
    try {
        // Decode image size
        BitmapFactory.Options o = new BitmapFactory.Options ();
        o.inJustDecodeBounds = true;

        FileInputStream fis = new FileInputStream (f);
        try {
            BitmapFactory.decodeStream (fis, null, o);
        } finally {
            fis.close ();
        }

        int scale = 1;
        for (int size = Math.max (o.outHeight, o.outWidth); 
            (size>>(scale-1)) > IMAGE_MAX_SIZE; ++scale);

        // Decode with inSampleSize
        BitmapFactory.Options o2 = new BitmapFactory.Options ();
        o2.inSampleSize = scale;
        fis = new FileInputStream (f);
        try {
            b = BitmapFactory.decodeStream (fis, null, o2);
        } finally {
            fis.close ();
        }
    } catch (IOException e) {
    }
    return b;
}
Gatefold answered 25/1, 2009 at 11:23 Comment(0)
T
4

To fix OutOfMemory you should do something like that please try this code

public Bitmap loadBitmap(String URL, BitmapFactory.Options options) {
                Bitmap bitmap = null;
                InputStream in = null;
                options.inSampleSize=4;
                try {
                    in = OpenHttpConnection(URL);
                    Log.e("In====>", in+"");
                    bitmap = BitmapFactory.decodeStream(in, null, options);
                    Log.e("URL====>", bitmap+"");

                    in.close();
                } catch (IOException e1) {
                }
                return bitmap;
            }

and

try {
                    BitmapFactory.Options bmOptions;
                    bmOptions = new BitmapFactory.Options();
                    bmOptions.inSampleSize = 1;
                    if(studentImage != null){
                        galleryThumbnail= loadBitmap(IMAGE_URL+studentImage, bmOptions);    
                    }

                    galleryThumbnail=getResizedBitmap(galleryThumbnail, imgEditStudentPhoto.getHeight(), imgEditStudentPhoto.getWidth());
                    Log.e("Image_Url==>",IMAGE_URL+studentImage+"");

                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
Tinkling answered 25/1, 2009 at 11:23 Comment(0)
C
4

Hi Please visit the link http://developer.android.com/training/displaying-bitmaps/index.html

or just try to retrieve bitmap with the given function

private Bitmap decodeBitmapFile (File f) {
    Bitmap bitmap = null;
    try {
        // Decode image size
        BitmapFactory.Options o = new BitmapFactory.Options ();
        o.inJustDecodeBounds = true;

        FileInputStream fis = new FileInputStream (f);
        try {
            BitmapFactory.decodeStream (fis, null, o);
        } finally {
            fis.close ();
        }

        int scale = 1;
        for (int size = Math.max (o.outHeight, o.outWidth); 
            (size>>(scale-1)) > IMAGE_MAX_SIZE; ++scale);

        // Decode with input-stram SampleSize
        BitmapFactory.Options o2 = new BitmapFactory.Options ();
        o2.inSampleSize = scale;
        fis = new FileInputStream (f);
        try {
            bitmap  = BitmapFactory.decodeStream (fis, null, o2);
        } finally {
            fis.close ();
        }
    } catch (IOException e) {
    }
    return bitmap ;
}
Calli answered 25/1, 2009 at 11:23 Comment(0)
S
4

use this concept this will help you, After that set the imagebitmap on image view

public static Bitmap convertBitmap(String path)   {

        Bitmap bitmap=null;
        BitmapFactory.Options bfOptions=new BitmapFactory.Options();
        bfOptions.inDither=false;                     //Disable Dithering mode
        bfOptions.inPurgeable=true;                   //Tell to gc that whether it needs free memory, the Bitmap can be cleared
        bfOptions.inInputShareable=true;              //Which kind of reference will be used to recover the Bitmap data after being clear, when it will be used in the future
        bfOptions.inTempStorage=new byte[32 * 1024]; 


        File file=new File(path);
        FileInputStream fs=null;
        try {
            fs = new FileInputStream(file);
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        }

        try {
            if(fs!=null)
            {
                bitmap=BitmapFactory.decodeFileDescriptor(fs.getFD(), null, bfOptions);
            }
            } catch (IOException e) {

            e.printStackTrace();
        } finally{ 
            if(fs!=null) {
                try {
                    fs.close();
                } catch (IOException e) {

                    e.printStackTrace();
                }
            }
        }

        return bitmap;
    }

If you want to make a small image from large image with height and width like 60 and 60 and scroll the listview fast then use this concept

public static Bitmap decodeSampledBitmapFromPath(String path, int reqWidth,
            int reqHeight) {

        final BitmapFactory.Options options = new BitmapFactory.Options();
        options.inJustDecodeBounds = true;
        BitmapFactory.decodeFile(path, options);

        options.inSampleSize = calculateInSampleSize(options, reqWidth,
                reqHeight);

        // Decode bitmap with inSampleSize set
        options.inJustDecodeBounds = false;
        Bitmap bmp = BitmapFactory.decodeFile(path, options);
        return bmp;
        }

    public static int calculateInSampleSize(BitmapFactory.Options options,
            int reqWidth, int reqHeight) {

        final int height = options.outHeight;
        final int width = options.outWidth;
        int inSampleSize = 1;

        if (height > reqHeight || width > reqWidth) {
            if (width > height) {
                inSampleSize = Math.round((float) height / (float) reqHeight);
            } else {
                inSampleSize = Math.round((float) width / (float) reqWidth);
             }
         }
         return inSampleSize;
        }

I hope it will help you much.

You can take help from developer site Here

Summersummerhouse answered 25/1, 2009 at 11:23 Comment(0)
A
3

After looking through all the answers, I was surprised to see that no one mentioned the Glide API for handling images. Great library, and abstracts out all the complexity of bitmap management. You can load and resize images quickly with this library and a single line of code.

     Glide.with(this).load(yourImageResource).into(imageview);

You can get the repository here: https://github.com/bumptech/glide

Anticipate answered 25/1, 2009 at 11:23 Comment(2)
It does not handle all the scenarios. Glide is not a one stop solution, we are using Glide but still facing many OOM crashesChrysanthemum
I wasn't saying it was a one stop solution. I was adding it to the toolbox for those that haven't heard of it.Anticipate
R
2

This will get an appropriate bitmap and reduce memory consumption

JAVA

Bitmap bm = null;

BitmapFactory.Options bmpOption = new BitmapFactory.Options();
bmpOption.inJustDecodeBounds = true;

FileInputStream fis = new FileInputStream(file);
BitmapFactory.decodeStream(fis, null, bmpOption);
fis.close();

int scale = 1;

if (bmpOption.outHeight > IMAGE_MAX_SIZE || bmpOption.outWidth > IMAGE_MAX_SIZE) {
    scale = (int)Math.pow(2, (int) Math.ceil(Math.log(IMAGE_MAX_SIZE / 
       (double) Math.max(bmpOption.outHeight, bmpOption.outWidth)) / Math.log(0.5)));
}

BitmapFactory.Options bmpOption2 = new BitmapFactory.Options();
bmpOption2.inSampleSize = scale;
fis = new FileInputStream(file);
bm = BitmapFactory.decodeStream(fis, null, bmpOption2);
fis.close();

Kotlin

val bm:Bitmap = null
val bmpOption = BitmapFactory.Options()
bmpOption.inJustDecodeBounds = true
val fis = FileInputStream(file)
BitmapFactory.decodeStream(fis, null, bmpOption)
fis.close()
val scale = 1
if (bmpOption.outHeight > IMAGE_MAX_SIZE || bmpOption.outWidth > IMAGE_MAX_SIZE)
{
  scale = Math.pow(2.0, Math.ceil((Math.log((IMAGE_MAX_SIZE / Math.max(bmpOption.outHeight, bmpOption.outWidth) as Double)) / Math.log(0.5))).toInt().toDouble()).toInt()
}
val bmpOption2 = BitmapFactory.Options()
bmpOption2.inSampleSize = scale
fis = FileInputStream(file)
bm = BitmapFactory.decodeStream(fis, null, bmpOption2)
fis.close()
Runnymede answered 25/1, 2009 at 11:23 Comment(0)
J
2

I used Decode File Descriptor which worked for me :

 FileInputStream  fileInputStream = null;
        try {
            fileInputStream  = new FileInputStream(file);
             FileDescriptor fd = fileInputStream.getFD();
            Bitmap imageBitmap = decodeSampledBitmapFromDescriptor(fd , 612,
                    816);
            imageView.setImageBitmap(imageBitmap);
        } catch (Exception e) {
            e.printStackTrace();
        }finally {
            if(fileInputStream != null){
                try {
                    fileInputStream.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }

Code to decode Sampled Bitmap From File Descriptor:

 /**
     * Decode and sample down a bitmap from a file input stream to the requested width and height.
     *
     * @param fileDescriptor The file descriptor to read from
     * @param reqWidth       The requested width of the resulting bitmap
     * @param reqHeight      The requested height of the resulting bitmap
     * @return A bitmap sampled down from the original with the same aspect ratio and dimensions
     * that are equal to or greater than the requested width and height
     */
    public static Bitmap decodeSampledBitmapFromDescriptor(
            FileDescriptor fileDescriptor, int reqWidth, int reqHeight) {

        // First decode with inJustDecodeBounds=true to check dimensions
        final BitmapFactory.Options options = new BitmapFactory.Options();
        options.inJustDecodeBounds = true;
        BitmapFactory.decodeFileDescriptor(fileDescriptor, null, options);

        // Calculate inSampleSize
        options.inSampleSize = calculateInSampleSize(options, reqWidth, reqHeight);

        // Decode bitmap with inSampleSize set
        options.inJustDecodeBounds = false;
        return BitmapFactory.decodeFileDescriptor(fileDescriptor, null, options);
    }

    /**
     * Calculate an inSampleSize for use in a {@link android.graphics.BitmapFactory.Options} object when decoding
     * bitmaps using the decode* methods from {@link android.graphics.BitmapFactory}. This implementation calculates
     * the closest inSampleSize that will result in the final decoded bitmap having a width and
     * height equal to or larger than the requested width and height. This implementation does not
     * ensure a power of 2 is returned for inSampleSize which can be faster when decoding but
     * results in a larger bitmap which isn't as useful for caching purposes.
     *
     * @param options   An options object with out* params already populated (run through a decode*
     *                  method with inJustDecodeBounds==true
     * @param reqWidth  The requested width of the resulting bitmap
     * @param reqHeight The requested height of the resulting bitmap
     * @return The value to be used for inSampleSize
     */
    public static int calculateInSampleSize(BitmapFactory.Options options,
                                            int reqWidth, int reqHeight) {
        // Raw height and width of image
        final int height = options.outHeight;
        final int width = options.outWidth;
        int inSampleSize = 1;

        if (height > reqHeight || width > reqWidth) {

            // Calculate ratios of height and width to requested height and width
            final int heightRatio = Math.round((float) height / (float) reqHeight);
            final int widthRatio = Math.round((float) width / (float) reqWidth);

            // Choose the smallest ratio as inSampleSize value, this will guarantee a final image
            // with both dimensions larger than or equal to the requested height and width.
            inSampleSize = heightRatio < widthRatio ? heightRatio : widthRatio;

            // This offers some additional logic in case the image has a strange
            // aspect ratio. For example, a panorama may have a much larger
            // width than height. In these cases the total pixels might still
            // end up being too large to fit comfortably in memory, so we should
            // be more aggressive with sample down the image (=larger inSampleSize).

            final float totalPixels = width * height;

            // Anything more than 2x the requested pixels we'll sample down further
            final float totalReqPixelsCap = reqWidth * reqHeight * 2;

            while (totalPixels / (inSampleSize * inSampleSize) > totalReqPixelsCap) {
                inSampleSize++;
            }
        }
        return inSampleSize;
    }
Jebel answered 25/1, 2009 at 11:23 Comment(0)
M
2

If you are lazy like me, you can start using Picasso library to load images.

Picasso.with(context).load(R.drawable.landing_screen).into(imageView1);
Picasso.with(context).load("file:///android_asset/DvpvklR.png").into(imageView2);
Picasso.with(context).load(new File(...)).into(imageView3);
Modest answered 25/1, 2009 at 11:23 Comment(0)
I
0

I needed to load a large size image into Bitmap and I used Glide to solve this issue. First check the image size with BitmapFactory.Options using inJustDecodeBounds set to true, then use Glide to get Bitmap object. I used the profiler to check memory usage but I did not see any memory spike like I did when I was using BitmapFactory.decodeFile(). I am writing in c# as I use Xamarin, so need a little tweak to use in Java. Glide library documentation

private Bitmap DecodeFile(File file) {
        // Decode image size
        BitmapFactory.Options options = new BitmapFactory.Options();
        
        // setting inJustDecodeBounds to true won't load the file into memory, 
        // but gives you the actual file size.
        options.InJustDecodeBounds = true;
        BitmapFactory.decodeStream(new FileInputStream(file), null, options);
        int actualWidth = options.OutWidth;
        int actualHeight = options.OutHeight;
                
        var ratio = (double)actualHeight / actualWidth;

        // Default to 800 x 600. changed the size whatever you need.
        var desiredWidth = 800;
        var desiredHeight = 600;

        if(actualHeight > actualWidth)
        {
            var ratio = (double)actualWidth / actualHeight;
            var futureTarget = Glide.With(Application.Context)
                .AsBitmap()
                .Load(file)
                .SetDiskCacheStrategy(DiskCacheStrategy.None)
                .SkipMemoryCache(true)
                .Submit((int)(desiredWidth * ratio), desiredWidth);
            bitmap = futureTarget.Get() as Bitmap;
        }
        else
        {
            var ratio = (double)actualHeight / actualWidth;
            var futureTarget = Glide.With(Application.Context)
                .AsBitmap()
                .Load(file)
                .SetDiskCacheStrategy(DiskCacheStrategy.None)
                .SkipMemoryCache(true)
                .Submit(desiredWidth, (int)(desiredWidth * ratio));
            bitmap = futureTarget.Get() as Bitmap;
        }return bitmap;}
Iphagenia answered 25/1, 2009 at 11:23 Comment(0)
Z
0

Best practices to avoid memory leaks or OOM for bitmap

  1. Do not keep bitmap references for long-lived to a Context / Activity.
  2. If you are using a large bitmap as background or something in your application then don’t pull the full image into the main memory. You can use the insample size property of bitmap to bring the size your screen needs.
  3. Clean bitmap reference once no longer use.
Zachary answered 25/1, 2009 at 11:23 Comment(0)
N
-1

Add the following lines to your manifest.xml file:

<application

    android:hardwareAccelerated="false"
    android:largeHeap="true">

    <activity>
    </activity>

</application>
Nebraska answered 25/1, 2009 at 11:23 Comment(1)
please format your code properly, also this doesn't looks like valid xmlPatellate
W
-10

After setting an bitmap to imageview, recycle it like this:

bitmap.recycle();
bitmap=null;
Wilmer answered 25/1, 2009 at 11:23 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.