With standard Tensorflow:
import tensorflow as tf
x = tf.convert_to_tensor([0,1,2,3,4], dtype=tf.int64)
y = x + 10
sess = tf.InteractiveSession()
sess.run([
tf.local_variables_initializer(),
tf.global_variables_initializer(),
])
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
z = y.eval(feed_dict={x:[0,1,2,3,4]})
print(z) # [10 11 12 13 14]
print(type(z)) # <class 'numpy.ndarray'>
coord.request_stop()
coord.join(threads)
sess.close()
With eager execution:
import tensorflow as tf
tf.enable_eager_execution() # requires r1.7
x = tf.convert_to_tensor([0,1,2,3,4], dtype=tf.int64)
y = x + 10
print(y) # tf.Tensor([10 11 12 13 14], shape=(5,), dtype=int64)
print(type(y)) # <class 'EagerTensor'>
If I try y.eval()
, I get NotImplementedError: eval not supported for Eager Tensors
. Is there no way to convert this? This makes Eager Tensorflow completely worthless.
There's a function tf.make_ndarray
that should convert a tensor to a numpy array but it causes AttributeError: 'EagerTensor' object has no attribute 'tensor_shape'
.