A Bi-Cubic Bezier surface patch is a 4x4 array of 3D points. Yes, the four corners touch the surface; and the rows are Bezier curves, and columns are also Bezier curves. But the deCasteljau algorithm is based on calculating the median between two points, and is equally meaningful in 3D as in 2D.
The next step in completing the above code is subdividing the patches to cover smaller portions. Then the simple boundary curve extraction above becomes a suitable polygon mesh.
Start by flattening the patches, inserting the vertex data directly instead of using a separate cache. This code iterates through the patches, looking up points in the vertex array and constructs a new array of patches which is then redefined with the same name.
/patch[ patch{ [exch { 1 sub vert exch get }forall ] }forall ]def
Then we need the deCasteljau algorithm to split Bezier curves. vop
comes from the matrix library and applies a binary operation upon corresponding elements of a vector and produces a new vector as the result.
/median { % [x0 y0 z0] [x1 y1 z1]
{add 2 div} vop % [ (x0+x1)/2 (y0+y1)/2 (z0+z1)/2 ]
} def
/decasteljau { % [P0] P1 P2 P3 . P0 P1' P2' P3' P3' P4' P5' P3
{p3 p2 p1 p0}{exch def}forall
/p01 p0 p1 median def
/p12 p1 p2 median def
/p23 p2 p3 median def
/p012 p01 p12 median def
/p123 p12 p23 median def
/p0123 p012 p123 median def
p0 p01 p012 p0123 % first half-curve
p0123 p123 p23 p3 % second half-curve
} def
Then some stack manipulation to apply to each row of a patch and assemble the results into 2 new patches.
/splitrows { % [b0 .. b15] . [c0 .. c15] [d0 .. d15]
aload pop % b0 .. b15
4 { % on each of 4 rows
16 12 roll decasteljau % roll the first 4 to the top
8 4 roll % exch left and right halves (probably unnecessary)
20 4 roll % roll new curve to below the patch (pushing earlier ones lower)
} repeat
16 array astore % pack the left patch
17 1 roll 16 array astore % roll, pack the right patch
} def
An ugly utility lets us reuse the row code for columns. The stack comments were necessary to write this procedure, so they're probably necessary to read it. n j roll
rolls n elements (to the left), j times; == the top j elements above n-th element (counting from 1). So n steady decreases, selecting where to put the element, and j selects which element to put there (dragging everything else with it). If bind
were applied, this procedure would be substantially faster than a dictionary-based procedure.
% [ 0 1 2 3
% 4 5 6 7
% 8 9 10 11
% 12 13 14 15 ]
/xpose {
aload pop % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 12 roll % 0 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3
14 11 roll % 0 4 8 9 10 11 12 13 14 15 1 2 3 5 6 7
13 10 roll % 0 4 8 12 13 14 15 1 2 3 5 6 7 9 10 11
12 9 roll % 0 4 8 12 1 2 3 5 6 7 9 10 11 13 14 15
11 9 roll % 0 4 8 12 1 5 6 7 9 10 11 13 14 15 2 3
10 8 roll % 0 4 8 12 1 5 9 10 11 13 14 15 2 3 6 7
9 7 roll % 0 4 8 12 1 5 9 13 14 15 2 3 6 7 10 11
8 6 roll % 0 4 8 12 1 5 9 13 2 3 6 7 10 11 14 15
7 6 roll % 0 4 8 12 1 5 9 13 2 6 7 10 11 14 15 3
6 5 roll % 0 4 8 12 1 5 9 13 2 6 10 11 14 15 3 7
5 4 roll % 0 4 8 12 1 5 9 13 2 6 10 14 15 3 7 11
4 3 roll % 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
16 array astore
} def
% [ 0 4 8 12
% 1 5 9 13
% 2 6 10 14
% 3 7 11 15 ]
/splitcols {
xpose
splitrows
xpose
} def
Then apply these functions to the patch data. Again, redefining patch each time.
/patch[ patch{ splitrows }forall ]def
/patch[ patch{ splitrows }forall ]def
/patch[ patch{ splitcols }forall ]def
/patch[ patch{ splitcols }forall ]def
This gives the ability to deal with smaller fragments.
Add a visibility test.
/visible { % patch . patch boolean
dup % p p
dup 3 get exch dup 0 get exch 12 get % p p3 p0 p12
1 index {sub} vop % p p3 p0 v0->12
3 1 roll {sub} vop % p v0->12 v0->3
cross /normal exch def
dup
[ exch dup 0 get exch dup 3 get exch dup 12 get exch 15 get ]
{ Cam {sub} vop normal dot 0 ge } forall
%add add add 4 div 0 lt
or or or
} def
Producing
Update: test was backwards.
Update: Test is Useless! You can see from the image that the bottom piece is not oriented outward, and of course, backface-culling doesn't prevent the handle from showing through the pot. This calls for hidden surface removal. And since Postscript doesn't have support for a Z-buffer, I guess it'll have to be a Binary Space Partition. So it's back to the books for me.
Update: Add a Model->World transform to turn the thing upright.
/Model -90 rotx def % model->world transform
/proj {
Model matmul 0 get % perform model->world transform
Cam {sub} vop % translate to camera coords
...
Producing this.
Complete program so far. (uses matrix library:mat.ps.) In ghostscript, you can view an animated rotation by holding [enter]
.
%!
%%BoundingBox: 109 246 492 487
%-109 -246 translate
(mat.ps)run %include matrix library
(det.ps)run %supplementary determinant function
/tok{ token pop exch pop }def
/s{(,){search{ tok 3 1 roll }{ tok exit }ifelse }loop }def
/f(teapot)(r)file def
/patch[ f token pop { [ f 100 string readline pop s ] } repeat ]def
/vert[ f token pop { [ f 100 string readline pop s ] } repeat ]def
/patch[ patch{ [exch { 1 sub vert exch get }forall ] }forall ]def
%vert == patch == %test data input flush quit
/I3 3 ident def % 3D identity matrix
/Cam [ 0 0 10 ] def % world coords of camera center viewpoint
/Theta [ 0 0 0 ] def % y-rotation x-rotation z-rotation
/Eye [ 0 0 15 ] def % eye relative to camera vp
/Rot I3 def % initial rotation seq
/Model -90 rotx def % model->world transform
/makerot {
Theta 0 get roty % pan
Theta 1 get rotx matmul % tilt
Theta 2 get rotz matmul % twist
} def
/proj {
Model matmul 0 get % perform model->world transform
Cam {sub} vop % translate to camera coords
Rot matmul % perform camera rotation
0 get aload pop Eye aload pop % extract dot x,y,z and eye xyz
4 3 roll div exch neg % perform perspective projection
4 3 roll add 1 index mul
4 1 roll 3 1 roll sub mul exch % (ez/dz)(dx-ex) (ez/dz)(dy-ey)
} def
/median { % [x0 y0 z0] [x1 y1 z1]
{add 2 div} vop % [ (x0+x1)/2 (y0+y1)/2 (z0+z1)/2 ]
} def
/decasteljau { % [P0] P1 P2 P3 . P0 P1' P2' P3' P3' P4' P5' P3
{p3 p2 p1 p0}{exch def}forall
/p01 p0 p1 median def
/p12 p1 p2 median def
/p23 p2 p3 median def
/p012 p01 p12 median def
/p123 p12 p23 median def
/p0123 p012 p123 median def
p0 p01 p012 p0123
p0123 p123 p23 p3
} def
/splitrows { % [b0 .. b15] . [c0 .. c15] [d0 .. d15]
aload pop % b0 .. b15
4 {
16 12 roll decasteljau
%8 4 roll
20 4 roll
} repeat
16 array astore
17 1 roll 16 array astore
} def
/xpose {
aload pop % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 12 roll % 0 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3
14 11 roll % 0 4 8 9 10 11 12 13 14 15 1 2 3 5 6 7
13 10 roll % 0 4 8 12 13 14 15 1 2 3 5 6 7 9 10 11
12 9 roll % 0 4 8 12 1 2 3 5 6 7 9 10 11 13 14 15
11 9 roll % 0 4 8 12 1 5 6 7 9 10 11 13 14 15 2 3
10 8 roll % 0 4 8 12 1 5 9 10 11 13 14 15 2 3 6 7
9 7 roll % 0 4 8 12 1 5 9 13 14 15 2 3 6 7 10 11
8 6 roll % 0 4 8 12 1 5 9 13 2 3 6 7 10 11 14 15
7 6 roll % 0 4 8 12 1 5 9 13 2 6 7 10 11 14 15 3
6 5 roll % 0 4 8 12 1 5 9 13 2 6 10 11 14 15 3 7
5 4 roll % 0 4 8 12 1 5 9 13 2 6 10 14 15 3 7 11
4 3 roll % 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 14
16 array astore
} def
/splitcols {
xpose
splitrows
xpose exch xpose
} def
/patch[ patch{ splitrows }forall ]def
/patch[ patch{ splitrows }forall ]def
/patch[ patch{ splitrows }forall ]def
/patch[ patch{ splitrows }forall ]def
/patch[ patch{ splitcols }forall ]def
/patch[ patch{ splitcols }forall ]def
/color {normal light dot 1 add 4 div
%1 exch sub
setgray} def
/visible { % patch . patch boolean
dup % p p
dup 3 get exch dup 0 get exch 12 get % p p3 p0 p12
1 index {sub} vop % p p3 p0 v0->12
3 1 roll {sub} vop % p v0->12 v0->3
cross /normal exch def
dup
[ exch dup 0 get exch dup 3 get exch dup 12 get exch 15 get ]
{ Cam {sub} vop normal dot 0 ge } forall
%add add add 4 div 0 lt
or or or
} def
/drawpatch {
% Four corners
%[ exch dup 0 get exch dup 3 get exch dup 12 get exch 15 get ]
visible {
[ exch
% control rows
%dup 4 get exch dup 5 get exch dup 6 get exch dup 7 get exch
%dup 11 get exch dup 10 get exch dup 9 get exch dup 8 get exch
% control columns
%dup 1 get exch dup 5 get exch dup 9 get exch dup 13 get exch
%dup 14 get exch dup 10 get exch dup 6 get exch dup 2 get exch
% Boundary curves
dup 8 get exch dup 4 get exch dup 0 get exch %curveto4
dup 14 get exch dup 13 get exch dup 12 get exch %curveto3
dup 7 get exch dup 11 get exch dup 15 get exch %curveto2
dup 1 get exch dup 2 get exch dup 3 get exch %curveto1
dup 0 get exch %moveto
pop ]
{ proj } forall
moveto curveto curveto curveto curveto
%moveto lineto lineto lineto lineto lineto lineto lineto closepath
%moveto lineto lineto lineto lineto lineto lineto lineto closepath
stroke
%flushpage flush (%lineedit)(r)file pop
}{
pop
}ifelse
} def
/R 20 def
/H -3 def
/ang 10 def
{
300 700 translate
1 70 dup dup scale div setlinewidth
% camera revolves around Y axis at height H, dist R
/Cam [ ang sin R mul H ang cos R mul ] def
/Theta [ ang H R atan 0 ] def % rotate camera back to origin
/Rot makerot def % squash rotation sequence into a matrix
patch {
drawpatch
} forall
pstack
showpage
%exit
/ang ang 10 add def
} loop