I try to pass 2 loss functions to a model as Keras allows that.
loss: String (name of objective function) or objective function or Loss instance. See losses. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.
The two loss functions:
def l_2nd(beta):
def loss_2nd(y_true, y_pred):
...
return K.mean(t)
return loss_2nd
and
def l_1st(alpha):
def loss_1st(y_true, y_pred):
...
return alpha * 2 * tf.linalg.trace(tf.matmul(tf.matmul(Y, L, transpose_a=True), Y)) / batch_size
return loss_1st
Then I build the model:
l2 = K.eval(l_2nd(self.beta))
l1 = K.eval(l_1st(self.alpha))
self.model.compile(opt, [l2, l1])
When I train, it produces the error:
1.15.0-rc3 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1630:
calling BaseResourceVariable.__init__ (from
tensorflow.python.ops.resource_variable_ops) with constraint is
deprecated and will be removed in a future version. Instructions for
updating: If using Keras pass *_constraint arguments to layers.
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call
last) <ipython-input-20-298384dd95ab> in <module>()
47 create_using=nx.DiGraph(), nodetype=None, data=[('weight', int)])
48
---> 49 model = SDNE(G, hidden_size=[256, 128],)
50 model.train(batch_size=100, epochs=40, verbose=2)
51 embeddings = model.get_embeddings()
10 frames <ipython-input-19-df29e9865105> in __init__(self, graph,
hidden_size, alpha, beta, nu1, nu2)
72 self.A, self.L = self._create_A_L(
73 self.graph, self.node2idx) # Adj Matrix,L Matrix
---> 74 self.reset_model()
75 self.inputs = [self.A, self.L]
76 self._embeddings = {}
<ipython-input-19-df29e9865105> in reset_model(self, opt)
---> 84 self.model.compile(opt, loss=[l2, l1])
85 self.get_embeddings()
86
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/tracking/base.py
in _method_wrapper(self, *args, **kwargs)
455 self._self_setattr_tracking = False # pylint: disable=protected-access
456 try:
--> 457 result = method(self, *args, **kwargs)
458 finally:
459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
NotImplementedError: Cannot convert a symbolic Tensor (2nd_target:0)
to a numpy array.
Please help, thanks!